搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

静态气压下平行轨道加速器电流分布与等离子体速度特性

刘帅 徐涛 刘康琪 张永鹏 杨兰均

引用本文:
Citation:

静态气压下平行轨道加速器电流分布与等离子体速度特性

刘帅, 徐涛, 刘康琪, 张永鹏, 杨兰均

Current distribution and plasma velocity characteristics of parallel-plate accelerator under static pressure

Liu Shuai, Xu Tao, Liu Kang-Qi, Zhang Yong-Peng, Yang Lan-Jun
PDF
HTML
导出引用
  • 电磁等离子体加速器可产生高密度高速度等离子体射流而广泛应用于等离子体物理研究与应用领域. 本文建立了平行轨道加速器电磁驱动等离子体实验平台, 通过磁探头阵列和光电二极管阵列研究了静态气压下平行轨道加速器的电流分布和等离子体速度特性. 平行轨道加速器驱动电源为正弦振荡衰减波电源, 总电容为120 μF, 回路总电感约为400 nH, 充电电压为13 kV时, 放电电流为170 kA, 脉宽为23.5 μs. 当放电电流较小、工作气压较高时, 平行轨道加速器电流分布较集中, 放电模式与雪犁模式相符. 随着放电电流的增大或工作气压的降低, 平行轨道加速器逐渐出现弥散的电流分布, 形成等离子体前沿和等离子体拖尾两个区域. 放电电流越大, 工作气压越低, 电流弥散分布越显著, 等离子体前沿电流分布比例越低, 等离子体前沿速度越高, 但等离子体速度增大的比例远低于放电电流增大的比例或工作气压平方根的倒数增大的比例.
    Electromagnetic plasma accelerators which can generate high-density and hypervelocity plasma jets have been widely used in plasma physics research and application fields. An experimental platform of parallel-plate accelerator electromagnetically driven plasma is established in this paper, mainly including a parallel-plate accelerator, a power supply, magnetic probes, photodiodes, a current probe, and an oscilloscope. The current distribution and plasma velocity characteristics of a parallel-plate accelerator under static pressure are studied by using magnetic probe array and photodiode array. The working gas is synthetic air. A mechanical pump is used to pump the vacuum chamber to about 1 Pa, and then synthetic air is injected into the vacuum chamber to a target pressure. The power supply of the parallel-plate accelerator has a sinusoidal oscillation attenuation waveform with a total capacitance of 120 μF and a total inductance of about 400 nH. When the charging voltage is 13 kV, the discharge current is 170 kA and the pulse width is 23.5 μs. The discharge currents are 38, 100, 135 kA, and 170 kA when the pressures are 100, 200, 400 and 1000 Pa, respectively. The current distribution of the parallel-plate accelerator is concentrated, and the discharge mode is consistent with the snowplow mode, when the discharge current is small and the working pressure is high. As the discharge current increases or the working pressure decreases, a diffuse current distribution gradually appears in the parallel-plate accelerator. Two regions are formed, i.e. the plasma front region and the plasma tail region. The diffuse current distribution phenomenon is more remarkable when the discharge current is higher or the working pressure is lower. The plasma front current distribution proportion decreases and the plasma front velocity increases with the increase of discharge current and the decrease of working pressure. However, the plasma velocity proportion increased is much lower than the discharge current proportion increased or working pressure proportion decreased. When the discharge current increases from 38–170 kA, the plasma velocity increases from 25.0 km/s to 33.6 km/s, with the velocity increment being only 34.4%. The plasma front region is subjected to both the Lorentz force and the thermal pressure of the plasma tail region.
      通信作者: 刘帅, liushuai@xjtu.edu.cn
    • 基金项目: 陕西省自然科学基础研究计划(批准号:2021JQ-044)资助的课题.
      Corresponding author: Liu Shuai, liushuai@xjtu.edu.cn
    • Funds: Project supported by the Natural Science Basic Research Program of Shaanxi Province, China (Grant No. 2021JQ-044).
    [1]

    Loebner K T K, Underwood T C, Wang B C, Cappelli M A 2016 IEEE Trans. Plasma Sci. 44 1534Google Scholar

    [2]

    Sakuma I, Kikuchi Y, Kitagawa Y, Asai Y, Onishi K, Fukumoto N, Nagata M 2015 J. Nucl. Mater. 463 233Google Scholar

    [3]

    蔡明辉, 吴逢时, 李宏伟, 韩建伟 2014 物理学报 63 019401Google Scholar

    Cai M H, Wu F S, Li H W, Han J W 2014 Acta Phys. Sin. 63 019401Google Scholar

    [4]

    Ticos C M, Wang Z, Wurden G A, Kline J L, Montgomery D S 2008 Phys. Plasmas 15 103701Google Scholar

    [5]

    Zhang Y, Gilmore M, Hsu S C, Fisher D M, Lynn A G 2017 Phys. Plasmas 24 110702Google Scholar

    [6]

    Underwood T C, Loebner K T K, Cappelli M A 2017 High Energ. Dens. Phys. 23 73Google Scholar

    [7]

    Kong D F, Zhuang G, Lan T, Zhang S B, Ye Y, Dong Q L, Chen C, Wu J, Zhang S, Zhao Z H, Meng F W, Zhang X H, Huang Y Q, Wen F, Zi P F, Li L, Hu G H, Song Y T 2023 Plasma Sci. Technol. 25 065601Google Scholar

    [8]

    Matsumoto T, Sekiguchi J, Asai T, Gota H, Garate E, Allfrey I, Valentine T, Morehouse M, Roche T, Kinley J, Aefsky S, Cordero M, Waggoner W, Binderbauer M, Tajima T 2016 Rev. Sci. Instrum. 87 053512Google Scholar

    [9]

    Cassibry J T, Stanic M, Hsu S C, Witherspoon F D, Abarzhi S I 2012 Phys. Plasmas 19 052702Google Scholar

    [10]

    Hsu S C, Moser A L, Merritt E C, Adams C S, Dunn J P, Brockington S, Case A, Gilmore M, Lynn A G, Messer S J, Witherspoon F D 2015 J. Plasma Physics 81 345810201Google Scholar

    [11]

    漆亮文, 赵崇霄, 闫慧杰, 王婷婷, 任春生 2019 物理学报 68 035203Google Scholar

    Qi L W, Zhao C X, Yan H J, Wang T T, Ren C S 2019 Acta Phys. Sin. 68 035203Google Scholar

    [12]

    刘帅, 黄易之, 郭海山, 张永鹏, 杨兰均 2018 物理学报 67 065201Google Scholar

    Liu S, Huang Y Z, Guo H S, Zhang Y P, Yang L J 2018 Acta Phys. Sin. 67 065201Google Scholar

    [13]

    Markusic T E, Choueiri E Y, Berkery J W 2004 Phys. Plasmas 11 4847Google Scholar

    [14]

    Bhuyan H, Mohanty S R, Neog N K, Bujarbarua S, Rout R K 2003 Meas. Sci. Technol. 14 1769Google Scholar

    [15]

    Tou T Y 1995 IEEE Trans. Plasma Sci. 23 870Google Scholar

    [16]

    Al-Hawat S 2004 IEEE Trans. Plasma Sci. 32 764Google Scholar

    [17]

    Mathuthua M, Zengeni T G, Gholap A V 1996 Phys. Plasmas 3 4572Google Scholar

    [18]

    Chow S P, Lee S, Tan B C 1972 J. Plasma Phys. 8 21Google Scholar

    [19]

    Lee S 2014 J. Fusion Energ. 33 319Google Scholar

    [20]

    Lee S, Saw S H, Lee P C K, Rawat R S, Schmidt H 2008 Appl. Phys. Lett. 92 111501Google Scholar

    [21]

    Aghamira F M, Behbahani R A 2011 J. Appl. Phys. 109 043301Google Scholar

    [22]

    Liu S, Huang Y Z, Guo H S, Lin T Y, Huang D, Yang L J 2018 Phys. Plasmas 25 053506Google Scholar

    [23]

    高著秀, 黄建国, 韩建伟, 杨宣宗, 冯春华 2010 航天器环境工程 27 285

    Gao Z X, Huang J G, Han J W, Yang X Z, Feng C H 2010 Spacecraft Environment Engineering 27 285

    [24]

    高著秀, 冯春华, 杨宣宗, 黄建国, 韩建伟 2012 物理学报 61 145201Google Scholar

    Gao Z X, Feng C H, Yang X Z, Huang J G, Han J W 2012 Acta Phys. Sin. 61 145201Google Scholar

    [25]

    张俊龙, 杨亮, 闫慧杰, 滑跃, 任春生 2015 物理学报 64 075201Google Scholar

    Zhang J L, Yang L, Yan H J, Hua Y, Ren C S 2015 Acta Phys. Sin. 64 075201Google Scholar

    [26]

    杨亮, 张俊龙, 闫慧杰, 滑跃, 任春生 2017 物理学报 66 055203Google Scholar

    Yang L, Zhang J L, Yan H J, Hua Y, Ren C S 2017 Acta Phys. Sin. 66 055203Google Scholar

    [27]

    杨亮, 闫慧杰, 张俊龙, 滑跃, 任春生 2014 高电压技术 40 2113Google Scholar

    Yang L, Yan H J, Zhang J L, Hua Y, Ren C S 2014 High Voltage Engineering 40 2113Google Scholar

    [28]

    刘帅, 史宇昊, 林天煜, 张永鹏, 路志建, 杨兰均 2021 物理学报 70 205205Google Scholar

    Liu S, Shi Y H, Lin T Y, Zhang Y P, Lu Z J, Yang L J 2021 Acta Phys. Sin. 70 205205Google Scholar

  • 图 1  实验布置图

    Fig. 1.  Experimental setup.

    图 2  磁探头线圈布置示意图

    Fig. 2.  Schematic diagram of the magnetic probe coil setup.

    图 3  磁场波形和光电二极管波形 (a)磁场波形; (b)光电二极管波形

    Fig. 3.  Magnetic field and photodiode waveforms: (a) Magnetic field waveform; (b) photodiode waveform.

    图 4  放电电流为100 kA时电流分布比例

    Fig. 4.  Current distribution ratio when the current is 100 kA.

    图 5  不同电流下的波形图 (a) 38 kA, 磁场; (b) 38 kA, 光电二极管; (c) 135 kA, 磁场; (d) 135 kA, 光电二极管; (e) 170 kA, 磁场; (f) 170 kA, 光电二极管

    Fig. 5.  Waveforms under different currents: (a) 38 kA, magnetic field; (b) 38 kA, photodiode; (c) 135 kA, magnetic field; (d) 135 kA, photodiode; (e) 170 kA, magnetic field; (f) 170 kA, photodiode.

    图 6  不同电流下的电流分布比例 (a) 38 kA; (b) 170 kA

    Fig. 6.  Current distribution ratio under different currents: (a) 38 kA; (b) 170 kA.

    图 7  等离子体前沿速度与电流的关系

    Fig. 7.  Relationship between plasma front velocity and current.

    图 8  不同静态气压下波形图 (a) 100 Pa, 磁场; (b) 100 Pa, 光电二极管; (c) 400 Pa, 磁场; (d) 400 Pa, 光电二极管; (e) 1000 Pa, 磁场; (f) 1000 Pa, 光电二极管

    Fig. 8.  Waveforms under different pressure: (a) 100 Pa, magnetic field; (b) 100 Pa, photodiode; (c) 400 Pa, magnetic field; (d) 400 Pa, photodiode; (e) 1000 Pa, magnetic field; (f) 1000 Pa, photodiode.

    图 9  不同气压下的电流分布比例 (a) 100 Pa; (b) 1000 Pa

    Fig. 9.  Current distribution ratio under different pressures: (a) 100 Pa; (b) 1000 Pa.

    图 10  等离子体前沿速度与气压的关系

    Fig. 10.  Relationship between plasma front velocity and pressure.

    图 11  平行轨道区域划分示意图

    Fig. 11.  Schematic diagram of the region in the parallel-plate.

  • [1]

    Loebner K T K, Underwood T C, Wang B C, Cappelli M A 2016 IEEE Trans. Plasma Sci. 44 1534Google Scholar

    [2]

    Sakuma I, Kikuchi Y, Kitagawa Y, Asai Y, Onishi K, Fukumoto N, Nagata M 2015 J. Nucl. Mater. 463 233Google Scholar

    [3]

    蔡明辉, 吴逢时, 李宏伟, 韩建伟 2014 物理学报 63 019401Google Scholar

    Cai M H, Wu F S, Li H W, Han J W 2014 Acta Phys. Sin. 63 019401Google Scholar

    [4]

    Ticos C M, Wang Z, Wurden G A, Kline J L, Montgomery D S 2008 Phys. Plasmas 15 103701Google Scholar

    [5]

    Zhang Y, Gilmore M, Hsu S C, Fisher D M, Lynn A G 2017 Phys. Plasmas 24 110702Google Scholar

    [6]

    Underwood T C, Loebner K T K, Cappelli M A 2017 High Energ. Dens. Phys. 23 73Google Scholar

    [7]

    Kong D F, Zhuang G, Lan T, Zhang S B, Ye Y, Dong Q L, Chen C, Wu J, Zhang S, Zhao Z H, Meng F W, Zhang X H, Huang Y Q, Wen F, Zi P F, Li L, Hu G H, Song Y T 2023 Plasma Sci. Technol. 25 065601Google Scholar

    [8]

    Matsumoto T, Sekiguchi J, Asai T, Gota H, Garate E, Allfrey I, Valentine T, Morehouse M, Roche T, Kinley J, Aefsky S, Cordero M, Waggoner W, Binderbauer M, Tajima T 2016 Rev. Sci. Instrum. 87 053512Google Scholar

    [9]

    Cassibry J T, Stanic M, Hsu S C, Witherspoon F D, Abarzhi S I 2012 Phys. Plasmas 19 052702Google Scholar

    [10]

    Hsu S C, Moser A L, Merritt E C, Adams C S, Dunn J P, Brockington S, Case A, Gilmore M, Lynn A G, Messer S J, Witherspoon F D 2015 J. Plasma Physics 81 345810201Google Scholar

    [11]

    漆亮文, 赵崇霄, 闫慧杰, 王婷婷, 任春生 2019 物理学报 68 035203Google Scholar

    Qi L W, Zhao C X, Yan H J, Wang T T, Ren C S 2019 Acta Phys. Sin. 68 035203Google Scholar

    [12]

    刘帅, 黄易之, 郭海山, 张永鹏, 杨兰均 2018 物理学报 67 065201Google Scholar

    Liu S, Huang Y Z, Guo H S, Zhang Y P, Yang L J 2018 Acta Phys. Sin. 67 065201Google Scholar

    [13]

    Markusic T E, Choueiri E Y, Berkery J W 2004 Phys. Plasmas 11 4847Google Scholar

    [14]

    Bhuyan H, Mohanty S R, Neog N K, Bujarbarua S, Rout R K 2003 Meas. Sci. Technol. 14 1769Google Scholar

    [15]

    Tou T Y 1995 IEEE Trans. Plasma Sci. 23 870Google Scholar

    [16]

    Al-Hawat S 2004 IEEE Trans. Plasma Sci. 32 764Google Scholar

    [17]

    Mathuthua M, Zengeni T G, Gholap A V 1996 Phys. Plasmas 3 4572Google Scholar

    [18]

    Chow S P, Lee S, Tan B C 1972 J. Plasma Phys. 8 21Google Scholar

    [19]

    Lee S 2014 J. Fusion Energ. 33 319Google Scholar

    [20]

    Lee S, Saw S H, Lee P C K, Rawat R S, Schmidt H 2008 Appl. Phys. Lett. 92 111501Google Scholar

    [21]

    Aghamira F M, Behbahani R A 2011 J. Appl. Phys. 109 043301Google Scholar

    [22]

    Liu S, Huang Y Z, Guo H S, Lin T Y, Huang D, Yang L J 2018 Phys. Plasmas 25 053506Google Scholar

    [23]

    高著秀, 黄建国, 韩建伟, 杨宣宗, 冯春华 2010 航天器环境工程 27 285

    Gao Z X, Huang J G, Han J W, Yang X Z, Feng C H 2010 Spacecraft Environment Engineering 27 285

    [24]

    高著秀, 冯春华, 杨宣宗, 黄建国, 韩建伟 2012 物理学报 61 145201Google Scholar

    Gao Z X, Feng C H, Yang X Z, Huang J G, Han J W 2012 Acta Phys. Sin. 61 145201Google Scholar

    [25]

    张俊龙, 杨亮, 闫慧杰, 滑跃, 任春生 2015 物理学报 64 075201Google Scholar

    Zhang J L, Yang L, Yan H J, Hua Y, Ren C S 2015 Acta Phys. Sin. 64 075201Google Scholar

    [26]

    杨亮, 张俊龙, 闫慧杰, 滑跃, 任春生 2017 物理学报 66 055203Google Scholar

    Yang L, Zhang J L, Yan H J, Hua Y, Ren C S 2017 Acta Phys. Sin. 66 055203Google Scholar

    [27]

    杨亮, 闫慧杰, 张俊龙, 滑跃, 任春生 2014 高电压技术 40 2113Google Scholar

    Yang L, Yan H J, Zhang J L, Hua Y, Ren C S 2014 High Voltage Engineering 40 2113Google Scholar

    [28]

    刘帅, 史宇昊, 林天煜, 张永鹏, 路志建, 杨兰均 2021 物理学报 70 205205Google Scholar

    Liu S, Shi Y H, Lin T Y, Zhang Y P, Lu Z J, Yang L J 2021 Acta Phys. Sin. 70 205205Google Scholar

  • [1] 张津硕, 孙辉, 杜志杰, 张雪航, 肖青梅, 范金蕤, 闫慧杰, 宋健. 预填充模式下同轴枪放电等离子体加速模型分析与优化. 物理学报, 2023, 72(15): 155202. doi: 10.7498/aps.72.20230463
    [2] 陈忠琪, 钟安, 戴栋, 宁文军. 屏蔽气体流速对同轴双管式氦气大气压等离子体射流粒子分布的影响. 物理学报, 2022, 71(16): 165201. doi: 10.7498/aps.71.20220421
    [3] 刘帅, 史宇昊, 林天煜, 张永鹏, 路志建, 杨兰均. 工作参数对平行轨道加速器放电模式的影响. 物理学报, 2021, 70(20): 205205. doi: 10.7498/aps.70.20210484
    [4] 余鑫, 漆亮文, 赵崇霄, 任春生. 同轴枪正、负脉冲放电等离子体特性的对比. 物理学报, 2020, 69(3): 035202. doi: 10.7498/aps.69.20191321
    [5] 刘帅, 黄易之, 郭海山, 张永鹏, 杨兰均. 平行轨道加速器等离子体动力学特性研究. 物理学报, 2018, 67(6): 065201. doi: 10.7498/aps.67.20172403
    [6] 周雯, 季珂, 陈鹤鸣. 基于平行磁控的磁化等离子体光子晶体THz波调制器. 物理学报, 2017, 66(5): 054210. doi: 10.7498/aps.66.054210
    [7] 向飞, 吴平, 曾凡光, 王淦平, 李春霞, 鞠炳全. 强流碳纳米管阴极快脉冲重频发射特性. 物理学报, 2015, 64(16): 164103. doi: 10.7498/aps.64.164103
    [8] 周林, 薛飞彪, 司粉妮, 杨建伦, 叶凡, 徐荣昆, 胡青元, 甫跃成, 蒋树庆, 李林波, 陈进川, 徐泽平. Z箍缩等离子体电流分布实验研究. 物理学报, 2012, 61(19): 195207. doi: 10.7498/aps.61.195207
    [9] 钟广明, 杜晓晴, 唐杰灵, 董向坤, 雷小华, 陈伟民. 影响倒装焊LED芯片电流分布均匀性的因素分析. 物理学报, 2012, 61(12): 127803. doi: 10.7498/aps.61.127803
    [10] 吴振宇, 杨银堂, 汪家友. 等离子体天线表面电流分布与辐射特性研究. 物理学报, 2010, 59(3): 1890-1894. doi: 10.7498/aps.59.1890
    [11] 王宝强, 徐晨, 刘英明, 解意洋, 刘发, 赵振波, 周康, 沈光地. 光子晶体垂直腔面发射激光器的电流分布研究. 物理学报, 2010, 59(12): 8542-8547. doi: 10.7498/aps.59.8542
    [12] 葛 洪, 张晓丹, 岳 强, 赵 静, 赵 颖. 甚高频等离子体增强化学气相沉积大面积平行板电极间真空电势差分布研究. 物理学报, 2008, 57(8): 5105-5110. doi: 10.7498/aps.57.5105
    [13] 周国成, 曹晋滨, 王德驹, 蔡春林. 无碰撞等离子体电流片中的低频波. 物理学报, 2004, 53(8): 2644-2653. doi: 10.7498/aps.53.2644
    [14] 冯贤平, 徐至展, 江志明, 张正泉, 陈时胜, 范品忠, 田莉, 周智锦. 等离子体中高阶电离离子的空间分布. 物理学报, 1988, 37(7): 1183-1187. doi: 10.7498/aps.37.1183
    [15] 王润文, 潘成明, 林尊琪, 朱大庆, 何兴法, 赵继然, 王笑琴, 陈仲裕, 柏建荣, 江敏华. 激光等离子体自发电流. 物理学报, 1987, 36(4): 452-458. doi: 10.7498/aps.36.452
    [16] 陈雅深. 双Maxwell分布电子驱动的等离子体. 物理学报, 1986, 35(6): 762-770. doi: 10.7498/aps.35.762
    [17] 夏蒙棼. 随机驱动等离子体电流. 物理学报, 1983, 32(3): 338-345. doi: 10.7498/aps.32.338
    [18] 夏蒙棼, 胡慧玲. 高频电磁波驱动等离子体电流. 物理学报, 1982, 31(2): 150-158. doi: 10.7498/aps.31.150
    [19] 夏蒙棼, 张承福. 波驱动等离子体电流的特征. 物理学报, 1981, 30(10): 1307-1317. doi: 10.7498/aps.30.1307
    [20] 霍裕平. 等离子体的静态稳定性. 物理学报, 1977, 26(2): 149-154. doi: 10.7498/aps.26.149
计量
  • 文章访问数:  1221
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-19
  • 修回日期:  2023-07-25
  • 上网日期:  2023-07-26
  • 刊出日期:  2023-10-05

/

返回文章
返回