搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维钒掺杂Cr2S3纳米片的生长与磁性研究

杨瑞龙 张钰樱 杨柯 姜琦涛 杨晓婷 郭金中 许小红

引用本文:
Citation:

二维钒掺杂Cr2S3纳米片的生长与磁性研究

杨瑞龙, 张钰樱, 杨柯, 姜琦涛, 杨晓婷, 郭金中, 许小红

Growth and magnetic properties of two-dimensional vanadium-doped Cr2S3 nanosheets

Yang Rui-Long, Zhang Yu-Ying, Yang Ke, Jiang Qi-Tao, Yang Xiao-Ting, Guo Jin-Zhong, Xu Xiao-Hong
PDF
导出引用
  • 二维磁性材料是近年来发展起来的新兴材料,在单层或者少层的原子厚度中以其独特的磁性特性和结构特征而备受关注。其中铁磁性材料在信息存储和处理等方面有着广泛的应用,所以当前研究主要集中在丰富二维铁磁数据库以及开发磁调制的修饰策略上。本文通过常压化学气相沉积法在云母片衬底上成功生长出了二维钒掺杂Cr2S3纳米片,获得了钒源温度765℃和质量0.010 g为纳米片生长情况最适中条件,并通过光学显微镜、原子力显微镜、拉曼光谱仪、扫描电子显微镜、X射线能谱、X射线光电子能谱对纳米片进行了表征。同时掺杂样品的磁性表征表明钒掺杂后样品居里转变温度变为105 K,由亚铁磁性变为铁磁性,矫顽力也显著增大,证明钒掺杂可以有效地调控Cr2S3纳米片的磁性。这些研究结果将有望推动钒掺杂Cr2S3材料向着实际应用的的可能性,成为下一代自旋电子应用的理想候选材料之一。
    Two-dimensional magnetic materials are emerging materials developed in recent years and have attracted much attention for their unique magnetic properties and structural features in single or few layers of atomic thickness. Among them, ferromagnetic materials have a wide range of applications such as information memory and processing. Therefore the current research is mainly focused on enriching the two-dimensional ferromagnetic database and developing modification strategies for magnetic modulation. In this paper, two-dimensional vanadium-doped Cr2S3nanosheets were successfully grown on mica substrates by atmospheric pressure chemical vapour deposition. The thickness and size of the nanosheets can be effectively regulated by changing the temperature and mass of vanadium source VCl3 powders, with the temperature of 765℃ and the mass of 0.010 g as the most appropriate conditions for the growth of nanosheets. The nanosheets were also characterised by optical microscopy, atomic force microscopy, raman spectroscopy, scanning electron microscopy, X-ray energy spectroscopy, X-ray photoelectron spectroscopy, and the nanosheets were regular in shape, with flat surfaces and controllable thicknesses, and high quality vanadium-doped Cr2S3 nanosheets were prepared. Meanwhile, the magnetic characterisation of the doped samples showed that the Curie transition temperature of the vanadium doped samples changed to 105 K, and the maximum magnetic moment point of 75 K in the M-T curve disappeared after V doping, and from subferromagnetic to ferromagnetic, and the coercivity in the M-H curve also increased significantly, which proved that the vanadium doping could effectively regulate the magnetic properties of Cr2S3 nanosheets. These results are expected to advance the possibility of vanadium-doped Cr2S3 materials toward practical applications and become one of the ideal candidate material for next generation spintronic applications.
  • [1]

    Burch K S, Mandrus D, Park J -G 2018 Nature 563 47

    [2]

    Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Pablo Jarillo-Herrero P, Xu X D 2017 Nature 546 270

    [3]

    Klein D R, MacNeill D, Lado J L, Soriano D, Navarro-Moratalla E, Watanabe K, Taniguchi T, Manni S, Canfield P, Fernández-Rossier J, Jarillo-Herrero P 2018 Science 360 1218

    [4]

    Jiang S W, Li L Z, Wang Z F, Shan J, Mak K F 2019 Nat. Electron. 2 159

    [5]

    Lin X Y, Yang W, Wang K L, Zhao W S 2019 Nat. Electron. 2 274

    [6]

    Wang Z, Zhang T Y, Ding M, Dong B J, Li Y X, Chen M L, Li X X, Huang J Q, Wang H W, Zhao X T, Li Y, Li D, Jia C K, Sun L D, Guo H H, Ye Y, Sun D M, Chen Y S, Yang T, Zhang J, Ono S, Han Z, Zhang Z D 2018 Nat. Nanotechnol. 13 554

    [7]

    Bonilla M, Kolekar S, Ma Y J, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Phan M-H, Batzill M 2018 Nat. Nanotechnol.13 289

    [8]

    Deng Y J, Yu Y J, Song Y C, Zhang J Z, Wang N Z, Sun Z Y, Yi Y F, Wu Y Z, Wu S W, Zhu J Y, Wang J, Chen X H, Zhang Y B 2018 Nature. 563 94

    [9]

    Chen W J, Sun Z Y, Wang Z J, Gu L H, Xu X D, Wu S W, Gao C L 2019 Science 366 983

    [10]

    Jiang H N, Zhang P, Wang X G, Gong Y J 2021 Nano Res. 14 1789

    [11]

    Wang H, Wen Y, Zhao X X, Cheng R Q, Yin L, Zhai B X, Jiang J, Li Z W, Liu C S, Wu F C, He J 2023 Adv. Funct. Mater. 35 2211388

    [12]

    Lu S H, Zhou Q H, Guo Y L, Zhang Y H, Wu Y L, Wang J L 2020 Adv. Mater.32 2002658

    [13]

    Guo Y L, Wang B, Zhang X W, Yuan S J, Ma L, Wang J L 2020 Infomat 2 639

    [14]

    Eremeev S V, Otrokov M M, Chulkov E V 2018 Nano lett. 18 6521

    [15]

    Hu T, Zhao G D, Gao H, Wu Y B, Hong J S, Stroppa A, Ren W 2020 Phys. Rev. B 101 125401

    [16]

    Yang S X, Chen Y J, Jiang C B 2021 InfoMat 3 397

    [17]

    Abramchuk M, Jaszewski S, Metz K R, Osterhoudt G B, Wang Y P, Burch K S, Tafti F 2018 Adv. Mater. 30 1801325.

    [18]

    Duan H L, Guo P, Wang C, Tan H, Hu W, Yan W S, Ma C, Cai L, Song L, Zhang W H, Sun Z H, Wang L J, Zhao W B, Yin Y W, Li X G, Wei S Q 2019 Nat. Commum. 10 1584

    [19]

    Zhou S S, Wang R Y, Han J B, Wang D L, Li H Q, Gan L, Zhai T Y 2018 Adv. Funct. Mater.29 1805880

    [20]

    Chu J W, Zhang Y, Wen Y, Qiao R X, Wu C C, He P, Yin L, Cheng R Q, Wang F, Wang Z X, Xiong J, Li Y R, He J 2019 Nano Lett. 19 2154

    [21]

    Cui F F, Zhao X X, Xu J J, Tang B, Shang Q Y, Shi J P, Huan Y H, Liao J H, Chen Q, Hou Y L, Zhang Q, Pennycook S J, Zhang Y F 2019 Adv. Mater. 32 1905896

    [22]

    Zhou X Y, Liu C, Song L T, Zhang H M, Huang Z W, He C L, Li B L, Lin X H, Zhang Z H, Shi S, Shen D Y, Song R, Li J, Liu X Q, Zou X M, Huang L, Liao L, Duan X D, Li B 2022 Sci. China-Phys. Mech. Astron. 65 276811

    [23]

    Yang R L, Zhang Y Y 2023 Journal of Materials Engineering 51 162 (in Chinese) [杨瑞龙,张钰樱 2023 材料工程 51 162]

    [24]

    Guo Y Q, Deng H T, Sun X, Li X L, Zhao J Y, Wu J C, Chu W S, Zhang S J, Pan H B, Zheng X S, Wu X J, Jin C Q, Wu C Z, Xie Y 2017 Adv. Mater. 29 1700715

  • [1] 熊宜浓, 吴闯文, 任传童, 孟德全, 陈是位, 梁世恒. 基于二维磁性材料的自旋轨道力矩研究进展. 物理学报, doi: 10.7498/aps.73.20231244
    [2] 弭孟娟, 于立轩, 肖寒, 吕兵兵, 王以林. 有机阳离子插层调控二维反铁磁MPX3磁性能. 物理学报, doi: 10.7498/aps.73.20232010
    [3] 杨瑞龙, 张钰樱, 杨柯, 姜琦涛, 杨晓婷, 郭金中, 许小红. 二维钒掺杂Cr2S3纳米片的生长与磁性研究. 物理学报, doi: 10.7498/aps.72.20231229
    [4] 刘南舒, 王聪, 季威. 磁性二维材料的近期研究进展. 物理学报, doi: 10.7498/aps.71.20220301
    [5] 王海宇, 刘英杰, 寻璐璐, 李竞, 杨晴, 田祺云, 聂天晓, 赵巍胜. 大面积二维磁性材料的制备及居里温度调控. 物理学报, doi: 10.7498/aps.70.20210223
    [6] 肖寒, 弭孟娟, 王以林. 二维磁性材料及多场调控研究进展. 物理学报, doi: 10.7498/aps.70.20202204
    [7] 蒋小红, 秦泗晨, 幸子越, 邹星宇, 邓一帆, 王伟, 王琳. 二维磁性材料的物性研究及性能调控. 物理学报, doi: 10.7498/aps.70.20202146
    [8] 张颂歌, 陈雨彤, 王宁, 柴扬, 龙根, 张广宇. 二维CrI3晶体的磁性测量与调控. 物理学报, doi: 10.7498/aps.70.20202197
    [9] 潘凤春, 徐佳楠, 杨花, 林雪玲, 陈焕铭. 非掺杂锐钛矿相TiO2铁磁性的第一性原理研究. 物理学报, doi: 10.7498/aps.66.056101
    [10] 王锋, 林闻, 王丽兹, 葛永明, 张小婷, 林海容, 黄伟伟, 黄俊钦, W. Cao. Cu掺杂ZnO磁性能的实验与理论研究. 物理学报, doi: 10.7498/aps.63.157502
    [11] 冯秋菊, 许瑞卓, 郭慧颖, 徐坤, 李荣, 陶鹏程, 梁红伟, 刘佳媛, 梅艺赢. 衬底位置对化学气相沉积法制备的磷掺杂p型ZnO纳米材料形貌和特性的影响. 物理学报, doi: 10.7498/aps.63.168101
    [12] 谢玲玲, 陈水源, 刘凤金, 张建敏, 林应斌, 黄志高. Zn0.97Cr0.03O的PLD制备及其铁磁性. 物理学报, doi: 10.7498/aps.63.077102
    [13] 吴孔平, 顾书林, 朱顺明, 黄友锐, 周孟然. 非故意掺杂碳对ZnMnO:N磁性影响的实验与理论研究. 物理学报, doi: 10.7498/aps.61.057503
    [14] 顾建军, 孙会元, 刘力虎, 岂云开, 徐芹. 结构相变对Fe掺杂TiO2薄膜室温铁磁性的影响. 物理学报, doi: 10.7498/aps.61.017501
    [15] 肖振林, 史力斌. 利用第一性原理研究Ni掺杂ZnO铁磁性起源. 物理学报, doi: 10.7498/aps.60.027502
    [16] 林竹, 郭志友, 毕艳军, 董玉成. Cu掺杂的AlN铁磁性和光学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.58.1917
    [17] 于 宙, 李 祥, 龙 雪, 程兴旺, 王晶云, 刘 颖, 曹茂盛, 王富耻. Mn掺杂ZnO稀磁半导体材料的制备和磁性研究. 物理学报, doi: 10.7498/aps.57.4539
    [18] 刘妍妍, 刘发民, 石 霞, 丁 芃, 周传仓. 钙钛矿型纳米BaFeO3的制备、结构表征及铁磁性研究. 物理学报, doi: 10.7498/aps.57.7274
    [19] 匡安龙, 刘兴翀, 路忠林, 任尚坤, 刘存业, 张凤鸣, 都有为. 稀释磁性半导体Sn1-xMnxO2的室温铁磁性. 物理学报, doi: 10.7498/aps.54.2934
    [20] 荣传兵, 赵玉华, 徐民, 赵恒和, 程力智, 何开元. 具有宽过冷液相区的Fe62Co8-x(Cr,Mo)xNb4Zr6B20非晶态合金的热稳定性与磁性. 物理学报, doi: 10.7498/aps.50.2235
计量
  • 文章访问数:  764
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 上网日期:  2023-10-08

/

返回文章
返回