搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大气湍流对空间相干光通信的相干探测性能影响研究

刘宇韬 徐苗 付兴虎 付广伟

引用本文:
Citation:

大气湍流对空间相干光通信的相干探测性能影响研究

刘宇韬, 徐苗, 付兴虎, 付广伟

Research on the Impact of Atmospheric Turbulence on Coherent Detection Performance of Space Coherent Optical Communication

Liu Yu-Tao, Xu Miao, Fu Xing-Hu, Fu Guang-Wei
PDF
导出引用
  • 空间相干光通信被认为是突破现有高速空间通信瓶颈的重要手段,但其应用受到大气湍流的极大限制。为此,本文首先基于Huygens-Fresnel原理和低频补偿功率谱反演法,研究了高斯光束经大气湍流传输后振幅和相位的随机分布特性;然后,利用相干混频效率及通信误码率模型,获得大气湍流对空间相干光通信系统性能的影响规律;最后,搭建激光外差探测实验系统,定量研究了大气湍流对空间相干光通信相干探测性能的影响。结果表明:弱湍流条件下,空间相干光通信性能几乎不受大气湍流的影响;中等强度湍流影响下,相干混频效率会随着湍流强度的增加而迅速下降,但通过提高单比特光子数可以有效抑制湍流对通信性能的负面影响;强湍流会显著破坏光束相干性,使得相干混频效率趋近于零,即使提高单比特光子数也无法有效改善通信性能。大气湍流是空间相干光通信发展的重要限制因素,该研究可为空间相干光通信系统性能评估提供有益参考。
    Space coherent optical communication technology is considered a significant approach for overcoming the current bottleneck in high-speed space communication; yet, atmospheric turbulence severely restricts its implementation. This paper first investigated the random distribution characteristics of the amplitude and phase of a Gaussian beam after it is transmitted through atmospheric turbulence based on the Huygens-Fresnel principle and the low-frequency compensation power spectrum inversion method. Then, using the coherent mixing efficiency and communication bit error rate model, the impact of atmospheric turbulence on the performance of spatial coherent optical communication systems is obtained; Finally, a laser heterodyne detection experimental system was built to quantitatively study the impact of atmospheric turbulence on the coherent detection performance of spatial coherent optical communication. The conclusions of this study are as follows: 1.The spatial phase distortion caused by the weak turbulence channel is relatively small and will hardly affect the light intensity distribution characteristics of the Gaussian beam. In the case of weak turbulence, the impact of weak turbulence on the performance of coherent optical communication systems is almost negligible. The communication bit error rate will decrease rapidly as the number of single bit data photons increases. The communication signal-to-noise ratio can be ensured to be better than 10-5 when the number of single-bit photons is greater than 10. 2.Moderate turbulence will change the intensity distribution characteristics of the Gaussian beam, but will not cause a serious shift in the center of the spot. Under moderate turbulence conditions, the coherent mixing efficiency decreases rapidly as the turbulence intensity continues to increase, but the communication bit error rate still decreases rapidly as the number of single bit data photons increases. At this time, increasing the number of single-bit photons can suppress the negative impact of moderate intensity turbulence on the performance of coherent optical communication systems. 3.Strong turbulence will cause severe spatial phase distortion of the beam, destroy the consistency of the light intensity distribution, and cause a serious shift in the center of the spot. Under strong turbulence conditions, the coherent mixing efficiency of coherent optical communication systems approaches zero, and increasing the number of single bit data photons cannot significantly reduce the bit error rate, seriously affecting the quality of coherent optical communication. Atmospheric turbulence is an important limiting factor for the development of space coherent optical communication, and this study can provide useful references for the performance evaluation of space coherent optical communication systems.
  • [1]

    Li R, Lin B J, Liu Y C, Shen Y, Dong M J, Zhao S, Kong C J, Liu N Q, Lin X 2023 Infrared Laser Eng. 52 20220393 (in Chinese) [李锐,林宝军,刘迎春,沈苑,董明佶,赵帅,孔陈杰,刘恩权,林夏 2023 红外与激光工程 52 20220393]

    [2]

    Zhang J M 2023 Opt. Commun Technol. 47 37 (in Chinese) [张家铭2023光通信技术47 37]

    [3]

    ZHANG T, MAO S, FU Q, Cao G, Su S, Jiang H 2017 J Laser Appl. 29 012013

    [4]

    Fu Q, Liu X, Jiang H, Hu Y, Jiang, L 2014 SPIE 9300 930029

    [5]

    Gao D R, Xie Z, Ma R, Wang W, Bai Z F, Jia S W, Shao W, Xie X P 2021 Acta Photonica Sin. 50 0406001 (in Chinese)[高铎瑞,谢壮,马榕,汪伟,白兆峰,郏帅威,邵雯,谢小平 2021 光子学报 50 0406001]

    [6]

    Israel D J, Edwards B L, Staren J W 2017 IEEE Aerospace Conference Proceedings 1-6

    [7]

    Robinson B S, Shih T, Khatri F I, Boroson D M, Hogan M J 2018 Free-Space Laser Communication and Atmospheric Propagation XXX 10524 105240S

    [8]

    Gregory M, Heine F, Kämpfner H, Lange R, Saucke K, Sterr U, Meyer R 2010 Free-Space Laser Communication Technologies XXII 7587 75870E

    [9]

    Hauschildt H, le Gallou N, Mezzasoma S, Ludwig Moeller H, Perdigues Armengol J, Witting M, Herrmann J, Carmona C 2019 International Conference on Space Optics 111800X

    [10]

    Satoh Y, Miyamoto Y, Takano Y, Yamakawa S, Kohata H 2017 IEEE International Conference on Space Optical Systems and Applications (ICSOS) 240

    [11]

    Munemasa Y, Kolev D R, Fuse T, Kubo-oka T, Kunimori H, Carrasco-Casado A, Takenaka H, Saito Y, Trinh P v, Suzuki K, Koyama Y, Toyoshima M 2018 Free-Space Laser Communication and Atmospheric Propagation XXX

    [12]

    Ren J Y, Sun H Y, Zhang L X, Zhang T Q 2019 Laser Infr. 49 143 (in Chinese) [任建迎,孙华燕,张来线,张天齐 2019激光与红外49 143]

    [13]

    Cui Y, Tang Y 2020 Space Int. 7 38 (in Chinese) [崔岳,唐勇2020国际太空7 38]

    [14]

    Wan Z, Shen Y, Wang Z, Shi Z, Liu Q, Fu X 2022 Light-Sci. Appl. 11 144

    [15]

    Wang L, Wang J, Tang X, Chen H, Chen X 2022 Opt. Express 30 7854

    [16]

    Li Y L, Mei H P, Ren Y C, Zhang J X, Tao Z W, Aizeziguli A, Liu S W 2022 Acta Phys. Sin. 71 8 (in Chinese) [李艳玲,梅海平,任益充,张骏昕,陶志炜,艾则孜姑丽•阿不都克热木,刘世韦 2022物理学报71 8]

    [17]

    Yang Y, Yan C, Hu C, Wu C 2017 Opt. Express 25 7567

    [18]

    Salem M, Rolland J P 2010 J Opt Soc Am A 27 1111

    [19]

    Liu Y, Gao M, Zeng X, Liu F, Bi W 2021 Opt. Laser Eng. 146 106694

    [20]

    Geng J, Feng Z, Cao C, Feng S, Xu X, Shang Y, Wu Z, Yan X 2021 Opt. Express 29 39016

    [21]

    Zheng D, Li Y, Zhou H, Bian Y, Yang C, Li W, Qiu J, Guo H, Hong X, Zuo Y, Giles I P, Tong W, Wu J 2018 Opt. Express 26 28879

    [22]

    Zhang H, Xu L, Guo Y, Cao J, Liu W, Yang L 2022 Opt. Express 30 7477

    [23]

    Kong Y X, Ke X Z, Yang Y 2015 Laser Optoelectron Prog. 52 95 (in Chinese) [孔英秀,柯熙政,杨媛 2015 激光与光电子学进展 52 95]

    [24]

    Liu C, Chen S, Li X, Xian H 2014 Opt. Express 22 15554

    [25]

    Schmidt, Jason D 2010 Numerical Simulation of Optical Wave Propagation with Examples in MATLAB (Bellingha: SPIE) pp157–163

    [26]

    Aizeziguli A, Tao Z W, Liu S W, Li Y L, Rao R Z, Ren Y C 2022 Acta Phys. Sin. 71 216 (in Chinese) [艾则孜姑丽•阿不都克热木,陶志炜,刘世韦,李艳玲,饶瑞中,任益充 2022物理学报71 216]

    [27]

    Xu Q W, Wang P P, Zeng Z J, Hang Z B, Zhou X X, Liu J M, Li Y, Chen S Q, Fan Z Y 2020 Acta Phys. Sin. 69 014209 (in Chinese) [徐启伟,王佩佩,曾镇佳,黄泽斌,周新星,刘俊敏,李瑛,陈书青,范滇元 2020 物理学报 69 014209]

    [28]

    Yan X, Zhang W R, Cao X Q, Feng Z J 2021 Acta Photonica Sin. 50 312 (in Chinese) [闫旭,张文睿,曹长庆,冯喆珺 2021光子学报50 312]

    [29]

    Wu Z, Cao C, Feng Z, Wu X, Duan C 2023 Opt. Lett. 48 5257

  • [1] 艾则孜姑丽·阿不都克热木, 陶志炜, 刘世韦, 李艳玲, 饶瑞中, 任益充. 大气湍流对接收光场时间相干特性的影响. 物理学报, doi: 10.7498/aps.71.20221202
    [2] 贺锋涛, 杜迎, 张建磊, 房伟, 李碧丽, 朱云周. Gamma-gamma海洋各向异性湍流下脉冲位置调制无线光通信的误码率研究. 物理学报, doi: 10.7498/aps.68.20190452
    [3] 郑晓桐, 郭立新, 程明建, 李江挺. 基于重复编码的海上可见光通信大气信道建模. 物理学报, doi: 10.7498/aps.67.20181112
    [4] 王飞, 余佳益, 刘显龙, 蔡阳健. 部分相干光束经过湍流大气传输研究进展. 物理学报, doi: 10.7498/aps.67.20180877
    [5] 闫夏超, 朱江, 张蜡宝, 邢强林, 陈亚军, 朱宏权, 李舰艇, 康琳, 陈健, 吴培亨. 基于超导纳米线单光子探测器深空激光通信模型及误码率研究. 物理学报, doi: 10.7498/aps.66.198501
    [6] 孙伟, 尹华磊, 孙祥祥, 陈腾云. 基于相干叠加态的非正交编码诱骗态量子密钥分发. 物理学报, doi: 10.7498/aps.65.080301
    [7] 吴承峰, 杜亚男, 王金东, 魏正军, 秦晓娟, 赵峰, 张智明. 弱相干光源测量设备无关量子密钥分发系统的性能优化分析. 物理学报, doi: 10.7498/aps.65.100302
    [8] 刘李辉, 吕炜煜, 杨超, 麦灿基, 陈德鹏. 部分相干双曲余弦厄米高斯光束在非Kolmogorov大气湍流中的传输特性. 物理学报, doi: 10.7498/aps.64.034208
    [9] 柯熙政, 王姣. 大气湍流中部分相干光束上行和下行传输偏振特性的比较. 物理学报, doi: 10.7498/aps.64.224204
    [10] 杜亚男, 解文钟, 金璇, 王金东, 魏正军, 秦晓娟, 赵峰, 张智明. 基于弱相干光源测量设备无关量子密钥分发系统的误码率分析. 物理学报, doi: 10.7498/aps.64.110301
    [11] 王律强, 苏桐, 赵宝升, 盛立志, 刘永安, 刘舵. X射线通信系统的误码率分析. 物理学报, doi: 10.7498/aps.64.120701
    [12] 李晓庆, 季小玲, 朱建华. 大气湍流中光束的高阶强度矩. 物理学报, doi: 10.7498/aps.62.044217
    [13] 李成强, 张合勇, 王挺峰, 刘立生, 郭劲. 高斯-谢尔模光束在大气湍流中传输的相干特性研究. 物理学报, doi: 10.7498/aps.62.224203
    [14] 刘扬阳, 吕群波, 张文喜. 大气湍流畸变对空间目标清晰干涉成像仿真研究. 物理学报, doi: 10.7498/aps.61.124201
    [15] 季小玲. 湍流对部分相干双曲余弦高斯光束的瑞利区间的影响. 物理学报, doi: 10.7498/aps.60.064207
    [16] 马阎星, 王小林, 周朴, 马浩统, 赵海川, 许晓军, 司磊, 刘泽金, 赵伊君. 大气湍流对多抖动法相干合成技术中相位调制信号的影响. 物理学报, doi: 10.7498/aps.60.094211
    [17] 李晋红, 吕百达. 部分相干涡旋光束通过大气湍流上行和下行传输的比较研究. 物理学报, doi: 10.7498/aps.60.074205
    [18] 仓吉, 张逸新. 斜程大气中聚焦J0相关部分相干光束的传输特性. 物理学报, doi: 10.7498/aps.58.2444
    [19] 陈晓文, 汤明玥, 季小玲. 大气湍流对部分相干厄米-高斯光束空间相干性的影响. 物理学报, doi: 10.7498/aps.57.2607
    [20] 季小玲, 肖 希, 吕百达. 大气湍流对多色部分空间相干光传输特性的影响. 物理学报, doi: 10.7498/aps.53.3996
计量
  • 文章访问数:  241
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 上网日期:  2024-04-03

/

返回文章
返回