搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于外腔面发射激光器腔内三倍频的可调谐紫外激光器

成佳 伍亚东 晏日 彭雪芳 朱仁江 王涛 蒋丽丹 佟存柱 宋晏蓉 张鹏

引用本文:
Citation:

基于外腔面发射激光器腔内三倍频的可调谐紫外激光器

成佳, 伍亚东, 晏日, 彭雪芳, 朱仁江, 王涛, 蒋丽丹, 佟存柱, 宋晏蓉, 张鹏

Tunable ultraviolet laser based on intracavity third harmonic generation of external cavity surface emitting laser

Cheng Jia, Wu Ya-Dong, Yan Ri, Peng Xue-Fang, Zhu Ren-Jiang, Wang Tao, Jiang Li-Dan, Tong Cun-Zhu, Song Yan-Rong, Zhang Peng
PDF
HTML
导出引用
  • 紫外激光器具有频率高、波长短、单光子能量大以及空间分辨率高等特点, 在精细加工、生命科学、光谱学等许多方面应用前景广阔. 本文报道了一种基于外腔面发射激光器腔内三倍频的可调谐紫外激光器. 该激光器采用了W型谐振腔, 并插入双折射滤波片作为偏振和波长调谐元件, 通过I类相位匹配的LBO晶体对980 nm基频光进行倍频产生490 nm蓝光, 再通过I类相位匹配的BBO晶体对980 nm基频光和490 nm倍频光进行和频获得327 nm紫外输出. 当LBO和BBO晶体的长度都为5 mm时, 在环境温度为15 ℃, 泵浦功率为47 W的条件下, 实验输出的327 nm紫外激光功率达到538 mW. 选择厚度为2 mm的双折射滤波片作为调谐元件, 可获得的紫外激光器输出波长的连续调谐范围为8.6 nm. 该紫外激光器同时显示了良好的光束质量和较好的功率稳定性.
    Ultraviolet laser has high frequency, short wavelength, large single-photon energy, and high spatial resolution, and has wide applications in many fields such as fine processing, life sciences, and spectroscopy. In this work, a wavelength tunable ultraviolet laser based on intracavity third harmonic generation from an external-cavity surface-emitting laser is reported. The W-type resonant cavity of the laser is composed of a distributed Bragg reflector (DBR) at the bottom of the gain chip, three plane-concave mirrors, and a rear plane mirror. On the arm containing the gain chip, a birefringent filter is inserted at the Brewster angle as the polarization and wavelength tuning element, which can also narrow the linewidth of the fundamental laser to a certain extent. A type-I phase-matched LBO crystal is placed on the beam waist between the folding mirrors M2 and M3 to convert the 980 nm fundamental laser into 490 nm blue light, and a type-I phase-matched BBO crystal is inserted in the beam waist near the rear mirror to produce a 327 nm ultraviolet output from the remained 980 nm fundamental laser and the frequency-doubled 490 nm second harmonic. Before the BBO crystal, a half-wave plate at 980 nm is employed to change the polarization of the fundamental laser, so as to meet the type-I phase-matching condition of the used BBO crystal. Owing to the larger nonlinear coefficient of the type-I phase-matched BBO crystal, and its obviously higher transmittance at 327 nm wavelength than the usually used LBO crystal, the output power is obtained to be 538 mW at 327 nm ultraviolet wavelength, corresponding to a conversion efficiency of 1.1% from pump light to ultraviolet laser. The experiment is performed under conditions of 15 ℃ temperature, 47 W absorbed pump power, 5 mm-length LBO and 5 mm-length BBO crystals. By using a 2 mm-thick birefringent filter as the tuning element, 34.1 nm tuning range of the 980 nm fundamental laser, 14.3 nm tuning range of the 490 nm second harmonic, and 8.6 nm tuning range of the 327 nm third harmonic are obtained. The ultraviolet laser exhibits good beam quality as well as acceptable power stability with the maximum power fluctuation less than 2% within 4.5 h.
      通信作者: 张鹏, zhangpeng2010@cqnu.edu.cn
    • 基金项目: 在渝本科高校与中国科学院所属院所合作项目(批准号: HZ2021007)、重庆市教委科技计划重大项目(批准号: KJZD-M201900502)、重庆市教委科技计划(批准号: KJQN202200557, KJQN202300525)、国家自然科学基金面上项目(批准号: 61975003, 61790584, 62025506)和重庆师范大学基金(批准号: 23XLB003)资助的课题.
      Corresponding author: Zhang Peng, zhangpeng2010@cqnu.edu.cn
    • Funds: Project supported by the Cooperation Project between Chongqing Local Universities and Institutions of Chinese Academy of Sciences, Chongqing Municipal Education Commission (Grant No. HZ2021007), the Science and Technology Research Program of Chongqing Municipal Education Commission, China (Grant No. KJZD-M201900502), the Science and Technology Research Program of Chongqing Municipal Education Commission, China (Grant Nos. KJQN202200557, KJQN202300525), the National Natural Science Foundation of China (Grant Nos. 61975003, 61790584, 62025506), and the Chongqing Normal University Fund Project, China (Grant No. 23XLB003).
    [1]

    唐娟, 廖健宏, 蒙红云 2007 激光与光电子学进展 44 52Google Scholar

    Tang J, Liao J H, Meng H Y 2007 Laser Optoelectron. Prog. 44 52Google Scholar

    [2]

    俞君, 曾智江, 朱三根 2008 红外 29 9Google Scholar

    Yu J, Zeng Z J, Zhu S G 2008 Infrared 29 9Google Scholar

    [3]

    李林, 李正佳, 何艳艳 2005 激光杂志 6 1Google Scholar

    Li L, Li Z J, He Y Y 2005 Laser J. 6 1Google Scholar

    [4]

    Sasaki T, Mori Y, Yoshimura M 2000 Mat. Sci. Eng. R. 30 54Google Scholar

    [5]

    Wang C X, Wang G Y, Hicks A V 2006 Proc. SPIE 6100 19Google Scholar

    [6]

    Hodgson N, Li M, Held A 2003 Proc. SPIE 4977 281Google Scholar

    [7]

    Basov N G, Danilychev V A, Popov Y M 1970 JETP Lett. 12 329

    [8]

    Rhodes C K 1979 Mol. Phys. 1 2Google Scholar

    [9]

    Oka M, Liu L Y, Wiechmann W 1995 IEEE J. Sel. Top. Quant. 1 859Google Scholar

    [10]

    Yap Y K, Inagaki M, Nakajima S 1996 Opt. Lett. 21 1348Google Scholar

    [11]

    Deyra L, Martial I 2014 Opt. Lett. 39 2236Google Scholar

    [12]

    Jewell J L, Harbison J P, Scherer A 1991 IEEE J. Quantum Electron. 27 1332Google Scholar

    [13]

    Crump P, Wenzel H, Erbert G 2012 Proc. SPIE 8241 222Google Scholar

    [14]

    Rahimi-Iman A 2016 J. Optics-UK 18 093003Google Scholar

    [15]

    Guina M, Rantamäki A, Härkönen A 2017 J. Phy. D Appl. Phys. 50 383001Google Scholar

    [16]

    Hastie J E, Morton L G, Dawson M D 2006 J. Opt. Soc. Am. B 1 109

    [17]

    Jennifer E H, Morton L G, Kemp A J 2006 Appl. Phys. Lett. 89 061114Google Scholar

    [18]

    Schwarzbäck T, Kahle H, Eichfelder M 2011 J. Opt. Soc. Korea 1 22Google Scholar

    [19]

    Shu Q Z, Caprara A L, Berger J D 2009 Proc. SPIE 7193 339Google Scholar

    [20]

    Polanik M, Hirlinger A J 2016 Annu. Rep. 8 140

    [21]

    Kaneda Y, Yarborough J M, Li L 2008 Opt. Lett. 33 1705Google Scholar

    [22]

    Meyer J T, Lukowski M L, Hessenius C 2021 Opt. Commun. 499 127255Google Scholar

    [23]

    Zondy J J 1991 Opt. Commun. 81 427Google Scholar

    [24]

    Nightingale J L,Becker R A, Willis P C 1987 Appl. Phys. Lett. 51 716Google Scholar

    [25]

    Smith A V, Armstrong D J, Alford W J 1998 J. Opt. Soc. Am. B 15 122Google Scholar

  • 图 1  (a)增益芯片外延结构简图; (b) DBR反射谱、有源区多量子阱PL谱及激光光谱

    Fig. 1.  (a) Schematics of the epitaxial structure of gain chip; (b) the reflection spectrum of DBR, the PL spectrum of the multiple quantum wells in active region, and the laser spectrum.

    图 2  紫外VECSEL实物图

    Fig. 2.  Photograph of the ultraviolet VECSEL.

    图 3  紫外VECSEL谐振腔中基频光腔模光斑半径大小随谐振腔位置的变化情况

    Fig. 3.  Evolution of the cavity mode radius of fundamental laser with the various position of the ultraviolet VECSEL.

    图 4  基频VECSEL和紫外VECSEL的输出功率

    Fig. 4.  Output powers of the IR VECSEL and UV VECSEL.

    图 5  (a) 基频激光的波长调谐图; (b) 倍频激光的波长调谐图; (c) 紫外激光的波长调谐与输出功率图

    Fig. 5.  (a) Wavelength tuning of the fundamental laser; (b) wavelength change of the frequency doubled laser; (c) tuning range and powers of the UV output.

    图 6  (a)基频激光的光束质量M2因子, 插图为光强的二维分布图; (b)倍频激光的光束质量M2 因子, 插图为对应的二维光强分布图

    Fig. 6.  (a) Beam quality M2 factor of the fundamental laser, the inset shows a 2-dimension distribution of the laser spot; (b) M2 factor of the frequency-doubled laser, and the 2-dimension distribution of the laser intensity is also shown as an inset.

    图 7  紫外VECSEL输出功率的稳定性

    Fig. 7.  Stability of the output powers of the ultraviolet VECSEL.

  • [1]

    唐娟, 廖健宏, 蒙红云 2007 激光与光电子学进展 44 52Google Scholar

    Tang J, Liao J H, Meng H Y 2007 Laser Optoelectron. Prog. 44 52Google Scholar

    [2]

    俞君, 曾智江, 朱三根 2008 红外 29 9Google Scholar

    Yu J, Zeng Z J, Zhu S G 2008 Infrared 29 9Google Scholar

    [3]

    李林, 李正佳, 何艳艳 2005 激光杂志 6 1Google Scholar

    Li L, Li Z J, He Y Y 2005 Laser J. 6 1Google Scholar

    [4]

    Sasaki T, Mori Y, Yoshimura M 2000 Mat. Sci. Eng. R. 30 54Google Scholar

    [5]

    Wang C X, Wang G Y, Hicks A V 2006 Proc. SPIE 6100 19Google Scholar

    [6]

    Hodgson N, Li M, Held A 2003 Proc. SPIE 4977 281Google Scholar

    [7]

    Basov N G, Danilychev V A, Popov Y M 1970 JETP Lett. 12 329

    [8]

    Rhodes C K 1979 Mol. Phys. 1 2Google Scholar

    [9]

    Oka M, Liu L Y, Wiechmann W 1995 IEEE J. Sel. Top. Quant. 1 859Google Scholar

    [10]

    Yap Y K, Inagaki M, Nakajima S 1996 Opt. Lett. 21 1348Google Scholar

    [11]

    Deyra L, Martial I 2014 Opt. Lett. 39 2236Google Scholar

    [12]

    Jewell J L, Harbison J P, Scherer A 1991 IEEE J. Quantum Electron. 27 1332Google Scholar

    [13]

    Crump P, Wenzel H, Erbert G 2012 Proc. SPIE 8241 222Google Scholar

    [14]

    Rahimi-Iman A 2016 J. Optics-UK 18 093003Google Scholar

    [15]

    Guina M, Rantamäki A, Härkönen A 2017 J. Phy. D Appl. Phys. 50 383001Google Scholar

    [16]

    Hastie J E, Morton L G, Dawson M D 2006 J. Opt. Soc. Am. B 1 109

    [17]

    Jennifer E H, Morton L G, Kemp A J 2006 Appl. Phys. Lett. 89 061114Google Scholar

    [18]

    Schwarzbäck T, Kahle H, Eichfelder M 2011 J. Opt. Soc. Korea 1 22Google Scholar

    [19]

    Shu Q Z, Caprara A L, Berger J D 2009 Proc. SPIE 7193 339Google Scholar

    [20]

    Polanik M, Hirlinger A J 2016 Annu. Rep. 8 140

    [21]

    Kaneda Y, Yarborough J M, Li L 2008 Opt. Lett. 33 1705Google Scholar

    [22]

    Meyer J T, Lukowski M L, Hessenius C 2021 Opt. Commun. 499 127255Google Scholar

    [23]

    Zondy J J 1991 Opt. Commun. 81 427Google Scholar

    [24]

    Nightingale J L,Becker R A, Willis P C 1987 Appl. Phys. Lett. 51 716Google Scholar

    [25]

    Smith A V, Armstrong D J, Alford W J 1998 J. Opt. Soc. Am. B 15 122Google Scholar

  • [1] 张竣珲, 樊利, 吴正茂, 苟宸豪, 骆阳, 夏光琼. 基于光注入下脉冲电流调制1550 nm 垂直腔面发射激光器获取宽带可调谐光学频率梳. 物理学报, 2023, 72(1): 014207. doi: 10.7498/aps.72.20221709
    [2] 刘紫玉, 亓丽梅, 道日娜, 戴林林, 武利勤. 基于VO2的波束可调太赫兹天线. 物理学报, 2022, 71(18): 188703. doi: 10.7498/aps.71.20220817
    [3] 王武越, 于宇, 李云飞, 王汞, 李凯, 王志永, 宋长禹, 李森森, 李宇海, 刘彤宇, 闫秀生, 王雨雷, 吕志伟. 脊型悬浮波导布里渊激光器. 物理学报, 2022, 71(2): 024203. doi: 10.7498/aps.71.20211539
    [4] 王武越, Yu Yu, 李云飞, 王汞, 李凯, 王志勇, 宋长禹, 李森森, 李宇海, 刘彤宇, 闫秀生, 王雨雷, 吕志伟. 脊型悬浮波导布里渊激光器(光电技术与应用). 物理学报, 2021, (): . doi: 10.7498/aps.70.20211539
    [5] 张若羽, 李培丽. 基于一维耦合腔光子晶体的声光可调谐平顶滤波器的研究. 物理学报, 2021, 70(5): 054208. doi: 10.7498/aps.70.20201461
    [6] 王志鹏, 关宝璐, 张峰, 杨嘉炜. 内腔亚波长光栅液晶可调谐垂直腔面发射激光器. 物理学报, 2021, 70(22): 224208. doi: 10.7498/aps.70.20210957
    [7] 程梦尧, 王兆华, 何会军, 王羡之, 朱江峰, 魏志义. 高效率三倍频产生355 nm皮秒激光的实验研究. 物理学报, 2019, 68(12): 124205. doi: 10.7498/aps.68.20190513
    [8] 邱小浪, 王爽爽, 张晓健, 朱仁江, 张鹏, 郭于鹤洋, 宋晏蓉. 双波长外腔面发射激光器. 物理学报, 2019, 68(11): 114204. doi: 10.7498/aps.68.20182261
    [9] 熊梦杰, 李进延, 罗兴, 沈翔, 彭景刚, 李海清. 新型高双折射微结构纤芯光子晶体光纤的可调谐超连续谱的特性研究. 物理学报, 2017, 66(9): 094204. doi: 10.7498/aps.66.094204
    [10] 谢仕永, 鲁远甫, 张小富, 乐小云, 杨程亮, 王保山, 许祖彦. CsB3O5晶体高效三倍频产生28.3W 355nm激光. 物理学报, 2016, 65(18): 184203. doi: 10.7498/aps.65.184203
    [11] 贾石, 于晋龙, 王菊, 王文睿, 王子雄, 陈斌. 基于波长双环路结构的新型光电振荡器的研究. 物理学报, 2015, 64(15): 154204. doi: 10.7498/aps.64.154204
    [12] 孟祥昊, 刘华刚, 黄见洪, 戴殊韬, 邓晶, 阮开明, 陈金明, 林文雄. Ba1-xB2-y-zO4SixAlyGaz晶体和频可调谐深紫外飞秒激光器. 物理学报, 2015, 64(16): 164205. doi: 10.7498/aps.64.164205
    [13] 阴明, 周寿桓, 冯国英. 可调谐准相位匹配高效宽带二次谐波转换. 物理学报, 2012, 61(23): 234206. doi: 10.7498/aps.61.234206
    [14] 于国君, 卜胜利, 王响, 纪红柱. 基于硅柱-磁性液体体系的光子晶体的可调谐负折射特性研究. 物理学报, 2012, 61(19): 194703. doi: 10.7498/aps.61.194703
    [15] 周可余, 叶辉, 甄红宇, 尹伊, 沈伟东. 基于压电聚合物薄膜可调谐Fabry-Perot滤波器的研究. 物理学报, 2010, 59(1): 365-369. doi: 10.7498/aps.59.365
    [16] 云茂金, 万 勇, 孔伟金, 王 美, 刘均海, 梁 伟. 可调谐位相型光瞳滤波器的横向光学超分辨和轴向扩展焦深. 物理学报, 2008, 57(1): 194-199. doi: 10.7498/aps.57.194
    [17] 赵书林, 朱宝强, 詹庭宇, 蔡希洁, 刘仁红, 杨 琳, 张志祥, 毕纪军. 高功率钕玻璃激光三倍频脉冲时间波形的研究. 物理学报, 2006, 55(8): 4170-4175. doi: 10.7498/aps.55.4170
    [18] 刘运全, 张 杰, 梁文锡, 王兆华. 飞秒掺钛蓝宝石激光三倍频理论和实验研究. 物理学报, 2005, 54(4): 1593-1598. doi: 10.7498/aps.54.1593
    [19] 董新永, 赵春柳, 关柏鸥, 谭华耀, 袁树忠, 开桂云, 董孝义. 可调谐光纤环形腔激光器输出特性的理论与实验研究. 物理学报, 2002, 51(12): 2750-2755. doi: 10.7498/aps.51.2750
    [20] 马洪良, 孙可煦, 易荣清, 崔延莉, 唐道源, 郑志坚. 三倍频激光等离子体X射线转换研究. 物理学报, 1996, 45(10): 1688-1693. doi: 10.7498/aps.45.1688
计量
  • 文章访问数:  316
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-07
  • 修回日期:  2024-01-08
  • 上网日期:  2024-02-19
  • 刊出日期:  2024-04-20

/

返回文章
返回