搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于硅柱-磁性液体体系的光子晶体的可调谐负折射特性研究

于国君 卜胜利 王响 纪红柱

基于硅柱-磁性液体体系的光子晶体的可调谐负折射特性研究

于国君, 卜胜利, 王响, 纪红柱
PDF
导出引用
导出核心图
  • 本文研究了硅柱在MnFe2O4磁性液体背景中排列成六边形结构的二维光子晶体的可调谐负折射特性. 利用平面波展开法和时域有限差分法理论研究了硅柱-磁性液体体系二维光子晶体的带隙结构、等频曲线和负折射现象随外磁场强度的变化关系. 模拟结果表明, 硅柱-磁性液体体系二维光子晶体工作在TE模式时, 其负折射特性可由外磁场调节. 在固定背景溶液的磁性颗粒体积分数和入射光频率时, 所研究的折射光束的偏转角和光子晶体的负折射率绝对值随外磁场的增大而增大, 而在固定背景溶液的磁性颗粒体积分数和外磁场强度时, 负折射角和负折射率的绝对值随入射光归一化频率增大而减小. 固定外场强度和入射光频率时, 所研究结构的负折射特性随背景溶液的磁性颗粒体积分数增大而变弱.
    • 基金项目: 上海市教育委员会科研创新项目(批准号: 11YZ120)和国家自然科学基金(批准号: 10704048)资助的课题.
    [1]

    Veselago V G 1968 Sov. Phys. Usp. 10 509

    [2]

    Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C, Schultz S 2000 Phys. Rev. Lett. 84 4184

    [3]

    Houck A A, Brock J B, Chuang I L 2003 Phys. Rev. Lett. 90 137401

    [4]

    Parimi P V, Lu W T, Vodo P, Sokoloff J, Derov J S, Sridhar S 2004 Phys. Rev. Lett .92 127401

    [5]

    Chen J B, Wang Y, Jia B H, Geng T, Li X P, Feng L, Qian W, Liang B M, Zhang X X, Gu M, Zhuang S L 2011 Nat. Photon 5 239

    [6]

    Luo C, Ibanescu M, Johnson S G, Joannopoulos J D 2003 Science 299 368

    [7]

    Gabrielli L H, Cardenas J, Poitras C B, Lipson M 2009 Nat. Photon 3 461

    [8]

    Pendry J B 2000 Phys. Rev. Lett. 85 3966

    [9]

    Foteinopoulou S, Soukoulis C M 2003 Phys. Rev. B 67 235107

    [10]

    Luo C, Johnson S G, Joannopoulos J D, Pendry J B 2002 Phys. Rev. B 65 201104

    [11]

    Patel R 2009 J. Opt. A: Pure. Appl. Opt. 11 125004

    [12]

    Pu S, Chen X, Chen L, Liao W, Chen Y, Xia Y 2005 Appl. Phys. Lett. 87 021901

    [13]

    Patel R, Mehta R V 2010 Eur Phys. J. Appl. Phys. 52 30702

    [14]

    Li J, Lin Y Q, Liu X D, Wen B C, Zhang T Z, Zhang Q M, Miao H 2010 Opt. Commun. 283 1182

    [15]

    Horng H E, Chen C S, Fang K L, Yang S Y, Chieh J J, Hong C Y, Yang H C 2004 Appl. Phys. Lett. 85 5592

    [16]

    Patel R 2011 J. Magn. Magn. Mater. 323 1360

    [17]

    Yang H C, Jeany B Y, Yang S Y, Horng H E, Huang T P, Hong C Y 2002 J. Magn .Magn. Mater. 252 287

    [18]

    Fan C Z, Wang G, Huang J P 2008 J. Appl. Phys. 103 094107

    [19]

    Pu S, Geng T, Chen X, Zeng X, Liu M, Di Z 2008 J. Magn. Magn. Mater. 320 2345

    [20]

    Pu S, Liu M 2009 J. Alloys Compd 481 851

    [21]

    Gao Y, Huang J P, Liu Y M, Gao L, Yu K W, Zhang X 2010 Phys. Rev. Lett. 104 034501

    [22]

    Hong C-Y, Horng H E, Kuo F C, Yang S Y, Yang H C, Wu J M 1999 Appl. Phys. Lett. 75 2196

    [23]

    Yang S Y, Horng H E, Shiao Y T, Hong C-Y, Yang H C 2006 J. Magn. Magn .Mater. 307 43

    [24]

    Fan C Z, Huang J P 2006 Appl. Phys. Lett. 89 141906

    [25]

    Notomi M 2000 Phys. Rev. B 62 10696

    [26]

    Notomi M 2002 Opt Quantum Electron 34 133

  • [1]

    Veselago V G 1968 Sov. Phys. Usp. 10 509

    [2]

    Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C, Schultz S 2000 Phys. Rev. Lett. 84 4184

    [3]

    Houck A A, Brock J B, Chuang I L 2003 Phys. Rev. Lett. 90 137401

    [4]

    Parimi P V, Lu W T, Vodo P, Sokoloff J, Derov J S, Sridhar S 2004 Phys. Rev. Lett .92 127401

    [5]

    Chen J B, Wang Y, Jia B H, Geng T, Li X P, Feng L, Qian W, Liang B M, Zhang X X, Gu M, Zhuang S L 2011 Nat. Photon 5 239

    [6]

    Luo C, Ibanescu M, Johnson S G, Joannopoulos J D 2003 Science 299 368

    [7]

    Gabrielli L H, Cardenas J, Poitras C B, Lipson M 2009 Nat. Photon 3 461

    [8]

    Pendry J B 2000 Phys. Rev. Lett. 85 3966

    [9]

    Foteinopoulou S, Soukoulis C M 2003 Phys. Rev. B 67 235107

    [10]

    Luo C, Johnson S G, Joannopoulos J D, Pendry J B 2002 Phys. Rev. B 65 201104

    [11]

    Patel R 2009 J. Opt. A: Pure. Appl. Opt. 11 125004

    [12]

    Pu S, Chen X, Chen L, Liao W, Chen Y, Xia Y 2005 Appl. Phys. Lett. 87 021901

    [13]

    Patel R, Mehta R V 2010 Eur Phys. J. Appl. Phys. 52 30702

    [14]

    Li J, Lin Y Q, Liu X D, Wen B C, Zhang T Z, Zhang Q M, Miao H 2010 Opt. Commun. 283 1182

    [15]

    Horng H E, Chen C S, Fang K L, Yang S Y, Chieh J J, Hong C Y, Yang H C 2004 Appl. Phys. Lett. 85 5592

    [16]

    Patel R 2011 J. Magn. Magn. Mater. 323 1360

    [17]

    Yang H C, Jeany B Y, Yang S Y, Horng H E, Huang T P, Hong C Y 2002 J. Magn .Magn. Mater. 252 287

    [18]

    Fan C Z, Wang G, Huang J P 2008 J. Appl. Phys. 103 094107

    [19]

    Pu S, Geng T, Chen X, Zeng X, Liu M, Di Z 2008 J. Magn. Magn. Mater. 320 2345

    [20]

    Pu S, Liu M 2009 J. Alloys Compd 481 851

    [21]

    Gao Y, Huang J P, Liu Y M, Gao L, Yu K W, Zhang X 2010 Phys. Rev. Lett. 104 034501

    [22]

    Hong C-Y, Horng H E, Kuo F C, Yang S Y, Yang H C, Wu J M 1999 Appl. Phys. Lett. 75 2196

    [23]

    Yang S Y, Horng H E, Shiao Y T, Hong C-Y, Yang H C 2006 J. Magn. Magn .Mater. 307 43

    [24]

    Fan C Z, Huang J P 2006 Appl. Phys. Lett. 89 141906

    [25]

    Notomi M 2000 Phys. Rev. B 62 10696

    [26]

    Notomi M 2002 Opt Quantum Electron 34 133

  • [1] 胡渝曜, 梁东, 王晶, 刘军. 基于电动可调焦透镜的大范围快速光片显微成像. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191908
    [2] 刘祥, 米文博. Verwey相变处Fe3O4的结构、磁性和电输运特性. 物理学报, 2020, 69(4): 040505. doi: 10.7498/aps.69.20191763
    [3] Algethami ObaidallahA(伊比), 李歌天, 柳祝红, 马星桥. Heusler合金Mn50–xCrxNi42Sn8的相变、磁性与交换偏置效应. 物理学报, 2020, 69(5): 058102. doi: 10.7498/aps.69.20191551
    [4] 任县利, 张伟伟, 伍晓勇, 吴璐, 王月霞. 高熵合金短程有序现象的预测及其对结构的电子、磁性、力学性质的影响. 物理学报, 2020, 69(4): 046102. doi: 10.7498/aps.69.20191671
    [5] 刘文姝, 高润亮, 冯红梅, 刘悦悦, 黄怡, 王建波, 刘青芳. 真空磁场热处理温度对不同厚度的Ni88Cu12薄膜畴结构及磁性的影响. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191942
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1536
  • PDF下载量:  552
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-02-24
  • 修回日期:  2012-03-22

基于硅柱-磁性液体体系的光子晶体的可调谐负折射特性研究

  • 1. 上海理工大学理学院, 上海 200093
    基金项目: 

    上海市教育委员会科研创新项目(批准号: 11YZ120)和国家自然科学基金(批准号: 10704048)资助的课题.

摘要: 本文研究了硅柱在MnFe2O4磁性液体背景中排列成六边形结构的二维光子晶体的可调谐负折射特性. 利用平面波展开法和时域有限差分法理论研究了硅柱-磁性液体体系二维光子晶体的带隙结构、等频曲线和负折射现象随外磁场强度的变化关系. 模拟结果表明, 硅柱-磁性液体体系二维光子晶体工作在TE模式时, 其负折射特性可由外磁场调节. 在固定背景溶液的磁性颗粒体积分数和入射光频率时, 所研究的折射光束的偏转角和光子晶体的负折射率绝对值随外磁场的增大而增大, 而在固定背景溶液的磁性颗粒体积分数和外磁场强度时, 负折射角和负折射率的绝对值随入射光归一化频率增大而减小. 固定外场强度和入射光频率时, 所研究结构的负折射特性随背景溶液的磁性颗粒体积分数增大而变弱.

English Abstract

参考文献 (26)

目录

    /

    返回文章
    返回