搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Al+光钟态“幻零”波长的理论计算

魏远飞 唐志明 李承斌 黄学人

引用本文:
Citation:

Al+光钟态“幻零”波长的理论计算

魏远飞, 唐志明, 李承斌, 黄学人

Theoretical calculation of the “tune-out” wavelengths for the clock states of Al+

Wei Yuan-Fei, Tang Zhi-Ming, Li Cheng-Bin, Huang Xue-Ren
PDF
导出引用
  • 本文使用组态相互作用加多体微扰理论方法对Al+光钟态3s21S0和3s3p3P0的“幻零”波长进行了理论计算。3s21S0态的“幻零”波长为266.994(1)nm,3s3p3P0态的“幻零”波长为184.56(7)nm、174.4(1)nm、121.5(1)nm和119.7(2)nm。精确测量这些“幻零”波长,有助于高精度确定光钟态相关跃迁的振子强度或者约化矩阵元,进而降低Al+光钟黑体辐射频移评估的不确定度。同时,对这些“幻零”波长的精密测量,对研究Al+原子结构具有重要意义。
    In quantum optical experiments, the polarizabilities of atomic systems play a very important role, which can be used to describe the interactions of atomic systems with external electromagnetic fields. When subjected to a specific electric field such as a laser field with a particular frequency, the frequency-dependent electric-dipole (E1) dynamic polarizability of an atomic state can reach zero. The wavelength corresponding to such a frequency is referred to as the “turn-out” wavelength. In this paper, the “Turn-out” wavelengths for the 3s2 1S0 and 3s3p 3P0 clock states of Al+ are calculated by using the configuration interaction plus many-body perturbation theory (CI+MBPT) method. The energies and E1 reduced matrix elements of low-lying states of Al+ are calculated. By combining these E1 reduced matrix elements with the experimental energies, the E1 dynamic polarizabilities of the 3s2 1S0 and 3s3p 3P0 clock states are determined in the angular frequency range of (0 ,0.42a.u. ) . The “turn-out” wavelengths are found at the zero-crossing points of the frequency-dependent dynamic polarizability curves for both the 3s2 1S0 and 3s3p 3P0 clock states. For the ground state 3s2 1S0, a single “turn-out” wavelength at 266.994(1) nm is observed. On the other hand, the excited state 3s3p 3P0 exhibits four distinct “turn-out” wavelengths at 184.56(1) nm, 174.433(1) nm, 121.52(2) nm, and 119.71(2) nm. The contributions of individual resonant transitions to the dynamic polarizabilities at the “turn-out” wavelengths are examined. It is observed that the resonant lines situated near a certain “turn-out” wavelength can provide dominant contributions to the polarizability, while the remaining resonant lines generally contribute minimally. Upon analyzing these data, we recommend precise measurement of these “turn-out” wavelengths to accurately determine the oscillator strengths or reduced matrix elements of the relevant transitions. This is crucial for minimizing the uncertainty of the blackbody radiation (BBR) frequency shift in Al+ optical clock and suppressing the systematic uncertainty. Meanwhile, precisely measuring these “turn-out” wavelengths is also helpful for further exploring the atomic structure of Al+.
  • [1]

    Chaudhuri R K, Das B P, Freed K F 1998 J. Chem. Phys. 108 2556

    [2]

    Dong H, Jiang J, Wu Z W, Dong C Z, Gaigalas G 2021 Chin. Phys. B 30 043103

    [3]

    Zhang T X, Li J G, Liu J P 2018 Acta. Phys. Sin. 67 053101 (in Chinese ) [张婷贤, 李冀光, 刘建鹏 2018 物理学报 67 053101]

    [4]

    Brewer S M, Chen J S, Hankin A M, Clements E R, Chou C W, Wineland D J, Hume D B, Leibrandt D R 2019 Phys. Rev. Lett. 123 033201

    [5]

    Cui K F, Chao S J, Sun C L, Wang S M, Zhang P, Wei Y F, Yuan J B, Cao J, Shu H L, Huang X R 2022 Eur. Phys. J. D 76 140

    [6]

    Keller J, Burgermeister T, Kalincev D, Didier A, Kulosa A P, Nordmann T, Kiethe J, Mehlstäubler T E 2019 Phys. Rev. A 99 013405

    [7]

    Mitroy J, Safronova M S, Clark C W 2010 J. Phys. B: At. Mol. Opt. Phys. 43 202001

    [8]

    Kar S, Wang Y S, Wang Y, Ho Y K 2018 Can. J. Phys. 96 633

    [9]

    Cheng Y J, Jiang J, Mitroy J 2013 Phys. Rev. A 88 022511[10] Jiang J, Tang L Y, Mitroy J 2013 Phys. Rev. A 87 032518

    [10]

    Yu W W, Yu R M, Cheng Y J 2015 Chin. Phys. Lett. 32 123102

    [11]

    Yu W W, Yu R M, Cheng Y J, Zhou Y J 2016 Chin. Phys. B 25 023101

    [12]

    Safronova M S, Zuhrianda Z, Safronova U I, Clark C W 2015 Phys. Rev. A 92 040501(R)

    [13]

    Holmgren W F, Trubko R, Hromada I, Cronin A D 2012 Phys. Rev. lett. 109 243004

    [14]

    Herold C D, Vaidya V D, Li X, Rolston S L, Porto J V, Safronova M S 2012 Phys. Rev. Lett. 109 243003

    [15]

    Reader J, Acquista N, Sansonetti C J, Sansonetti J E 1990 Astrophys. J. Suppl.Ser.72 831

    [16]

    Samain D 1995 Astron. Astrophys.Suppl.Ser. 113 237

    [17]

    Morton D C 1991 Astrophys. J. Suppl.Ser. 77 119

    [18]

    Safronova M S, Kozlov M G, Clark C W 2011 Phys. Rev. Lett. 107 143006

    [19]

    Tang Z M, Yu Y M, Jiang J, Dong C Z 2018 J. Phys. B: At. Mol. Opt. Phys. 51 125002

    [20]

    Wu L, Wang Xia, Wang T, Jiang J, Dong C Z 2023 New J. Phys. 25 043011

    [21]

    Dzuba V A, Flambaum V V, Kozlov M G 1996 Phys. Rev. A 54 3948

    [22]

    Kozlov M G, Porsev S G, Safronova M S, Tupitsyn I I 2015 Comput. Phys. Commun. 195 199

    [23]

    Tang Z M, Yu Y M, Dong C Z 2018 Chin. Phys. B 27 063101

    [24]

    Kramida A, Ralchenko Yu, Reader J and NIST ASD Team 2020 NIST Atomic Spectra Database (ver. 5.8) [Online]. Available: https://physics.nist.gov/asd. National Institute of Standards and Technology, Gaithersburg, MD

    [25]

    Kumar R, Chattopadhyay S, Angom D, Mani B K 2021 Phys. Rev. A 103 022801

    [26]

    Mitroy J, Zhang J Y, Bromley M W J, Rollin R G 2009 Eur. Phys. J. D 53 15

    [27]

    Johnson W R, Safronova M S, Safronova U I 1997 Phys. Scr. 56, 252

    [28]

    Stanek M, Glowacki L, Migdalek J 1996 J. Phys. B: At. Mol. Opt. Phys. 29 2985

    [29]

    Das B P, Idrees M 1990 Phys. Rev. A 42 6900

    [30]

    Fischer C F 2009 Phys. Scr. T134 014019

    [31]

    Ekman J, Godefroid M R and Hartman H 2014 Atoms 2 215

  • [1] 曾滔, 董雨晨, 王天昊, 田龙, 黄楚怡, 唐健, 张俊佩, 余羿, 童欣, 樊群超. 极化中子散射零磁场屏蔽体的有限元分析. 物理学报, doi: 10.7498/aps.72.20230559
    [2] 陈池婷, 吴磊, 王霞, 王婷, 刘延君, 蒋军, 董晨钟. B2+和B+离子的静态偶极极化率和超极化率的理论研究. 物理学报, doi: 10.7498/aps.72.20221990
    [3] 王婷, 蒋丽, 王霞, 董晨钟, 武中文, 蒋军. Be+离子和Li原子极化率和超极化率的理论研究. 物理学报, doi: 10.7498/aps.70.20201386
    [4] 张婷贤, 李冀光, 刘建鹏. Al+离子3s2 1S0→3s3p 3,1P1o跃迁同位素偏移的理论研究. 物理学报, doi: 10.7498/aps.67.20172261
    [5] 张陈俊, 王养丽, 陈朝康. InCn+(n=110)团簇的密度泛函理论研究. 物理学报, doi: 10.7498/aps.67.20172662
    [6] 陈泽章. 太赫兹波段液晶分子极化率的理论研究. 物理学报, doi: 10.7498/aps.65.143101
    [7] 徐胜楠, 刘天元, 孙美娇, 李硕, 房文汇, 孙成林, 里佐威. 溶剂效应对β胡萝卜素分子电子振动耦合的影响. 物理学报, doi: 10.7498/aps.63.167801
    [8] 温俊青, 张建民, 姚攀, 周红, 王俊斐. PdnAl(n=18)二元团簇的密度泛函理论研究. 物理学报, doi: 10.7498/aps.63.113101
    [9] 郭钊, 陆斌, 蒋雪, 赵纪军. 幻数尺寸Li-n-1,Lin,Li+ n+1(n=20,40)团簇的几何结构、电子与光学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.60.013601
    [10] 朱菁, 吕昌贵, 洪旭升, 崔一平. 分子一阶超极化率溶剂效应的理论研究. 物理学报, doi: 10.7498/aps.59.2850
    [11] 朱兴波, 张好, 冯志刚, 张临杰, 李昌勇, 赵建明, 贾锁堂. Cs 39D态Rydberg原子Stark光谱的实验研究. 物理学报, doi: 10.7498/aps.59.2401
    [12] 姚建明, 杨翀. AB效应对自旋多端输运的影响. 物理学报, doi: 10.7498/aps.58.3390
    [13] 汪大林, 孙军强, 王 健. 基于周期极化反转铌酸锂光波导高速非归零码到归零码的转换. 物理学报, doi: 10.7498/aps.57.252
    [14] 林 洁, 刘绍军, 李融武, 祝文军. 自由能方法与零压下Al的熔化温度. 物理学报, doi: 10.7498/aps.57.61
    [15] 刘照军, 吴国祯. 亚乙基硫脲的表面增强拉曼极化率研究:电磁和电荷转移机制. 物理学报, doi: 10.7498/aps.55.6315
    [16] 掌蕴东, 孙旭涛, 何竹松. 激光感生色散光学滤波理论. 物理学报, doi: 10.7498/aps.54.3000
    [17] 马晓光, 孙卫国, 程延松. 高密度体系光电离截面新表达式的应用. 物理学报, doi: 10.7498/aps.54.1149
    [18] 韩定安, 郭 弘, 孙 辉, 白艳锋. 三能级Λ-系统探测光的频率调制效应研究. 物理学报, doi: 10.7498/aps.53.1793
    [19] 蔡 理, 马西奎, 王 森. 量子细胞神经网络的超混沌特性研究. 物理学报, doi: 10.7498/aps.52.3002
    [20] 何兴虹, 李白文, 张承修. 碱原子高里德堡态的极化率. 物理学报, doi: 10.7498/aps.38.1717
计量
  • 文章访问数:  199
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 上网日期:  2024-04-03

/

返回文章
返回