搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

脉冲大电流直线驱动装置电-磁-热-结构多场耦合的局域建模方法

孙建 王秋良 程军胜 熊玲 丛源涛 王贺阳

引用本文:
Citation:

脉冲大电流直线驱动装置电-磁-热-结构多场耦合的局域建模方法

孙建, 王秋良, 程军胜, 熊玲, 丛源涛, 王贺阳

Local modeling method for electric-magnetic-thermal-structural multi-field coupling of a pulsed high current linear driving device

Sun Jian, Wang Qiu-liang, Cheng Jun-sheng, Xiong Ling, Cong Yuan-tao, Wang He-yang
PDF
导出引用
  • 脉冲大电流直线驱动装置运行过程中产生的极端工况导致多种损伤形式。为了研究多场耦合过程并分析多物理参量作用机理,建立了动态下的电磁场、温度场、结构场数学物理模型。利用轨道反向运动及接触远端物理量渐进平移不变的特性进行局域求解。模型还考虑了材料属性温度依赖性,热应力,接触面摩擦热等实际因素。各个物理场采用同一套网格体系,电磁场以及温度场的有限元离散格式采用欧拉向后差分形式求解,结构场则采用Newmark法进行求解,完成多场耦合下的数值模拟。通过与数值工具EMAP3D、Comsol在相同模型和输入条件下的计算结果以及相关实验比较,验证了该模型的可靠性。本文采用一种C型电枢进行案例计算,得到了多参量的典型演化过程,并对速度趋肤效应下的场分布进行了讨论。
    The pulsed high current linear driving device operates under extreme working conditions, and various forms of metal damage will reduce the service life of the device. At present, the multi-physics coupling mechanism of pulsed high current linear driving device is still unclear, and the multi-parameter diagnosis method in the laboratory environment is limited. Therefore, it is urgent to clarify the evolution process of multiple physical parameters through numerical modeling methods, so as to guide the optimization of the overall performance and improve the service life of the device. In this paper, mathematical and physical models of electromagnetic field, temperature field and structural field under dynamic conditions are established. The local solution is carried out by using the characteristics of rail reverse motion and the invariant physical quantities at the distal end of the contact. The constraint equations of the non-equipotential surface of the rail entrance and the armature-rail interface conditions under the technical framework are derived. The constraint equations applied by the penalty function method. The model also takes into account practical factors such as the temperature dependence of the material properties, thermal stresses, and the frictional heat of the contact surface. The finite element discrete format of the electromagnetic field and the temperature field is solved in the form of Euler's backward differentiation, and the structural field is solved by the Newmark method. The reliability of the model is verified by comparing the calculation results with the numerical tools EMAP3D and Comsol under the same configuration and input conditions, as well as related experiments. Through the numerical simulation of the C-type armature, the typical evolution process of the corresponding multi-parameter is obtained. During sliding electrical contact, the velocity skin effect becomes more pronounced with increasing velocity. The current is gradually concentrated on the surface of the rail, and the highest current density is found at the rear edge of the contact surface and at the edge of the outer arm of the armature. Moreover, the magnetic induction intensity at the tail of the contact surface continues to shrink over time. The heat-concentrated region appears at the top edge of the contact surface, and over time it extends along the sliding and bottom directions of the armature. In addition, there is peak stress at the front of the rail contact and significant stress at the armature throat. When the local stress at the throat of the armature exceeds the corresponding yield strength, it can cause severe deformation or even fracture of the armature.
  • [1]

    H. D. Fair 2001 IEEE Transactions on Magnetics 37 25.

    [2]

    Ma Weiming, Lu Junyong 2023 Transactions of China electrotechnical society 38 3943(in Chinese) [马伟明,鲁军勇2023电工技术学报38 3943].

    [3]

    J. Sun, J. Cheng, Q. Wang 2021 IEEE Transactions on Plasma Science 49 3988.

    [4]

    F. Stefani, J. V. Parker 1999 IEEE Transactions on Magnetics 35 312.

    [5]

    S. Li, J. Li, S. Xia, Q. Zhang, P. Liu 2019 IEEE Transactions on Plasma Science 47 2399.

    [6]

    J. Sun, J. Cheng, Q. Wang 2022 IEEE Transactions on Plasma Science 50 1032.

    [7]

    Yin Qiang, Zhang He, Li Haojie, Shi Yunlei 2016 High Power Laser and Particle Beams 28 180(in Chinese) [殷强,张合,李豪杰2016强激光与粒子束28 180].

    [8]

    LI Xin, WENG Chun-sheng 2009 Journal of Gun Launch & Control 1(in Chinese) [李昕,翁春生火炮发射与控制学报1].

    [9]

    Xin Li, Chunsheng Weng 2008 Progress in Natural Science 18 1565.

    [10]

    B. Tang, Y. Xu, Q. Lin, B. Li 2017 IEEE Transactions on Plasma Science 45 1361.

    [11]

    ZHENG Du-cheng,XU Rong,CHENG Wen-ping 2019 Advanced Technology of Electrical Engineering and Energy 38 33(in Chinese) [郑杜成,徐蓉,成文凭2019电工电能新技术38 33].

    [12]

    ZHAI Xiaofei, YANG Fan, ZHANG Xiao 2021 Journal of Naval University of Engineering 33 19(in Chinese) [翟小飞,杨帆,张晓2021海军工程大学学报33 19].

    [13]

    Kuo-Ta Hsieh 1995 IEEE Transactions on Magnetics 31 604.

    [14]

    Kuo-Ta Hsieh, Bok-Ki Kim 1999 IEEE Transactions on Magnetics 35 166.

    [15]

    Kuo-Ta Hsieh 2007 IEEE Transactions on Magnetics 43 1131.

    [16]

    Q. Lin, B. Li 2020 IEEE Transactions on Plasma Science 48 2287.

    [17]

    Q. Lin, B. Li 2016 Defence Technology 12 101.

    [18]

    Q. Lin, B. Li 2020 Acta Armamentarii 41 1697(in Chinese) [林庆华,栗保明2020兵工学报41 1697].

    [19]

    H. Shatoff, D. A. Pearson, A. E. Kull 2005 2005 IEEE Pulsed Power Conference 253.

    [20]

    G. -H. Wang, L. Xie, Y. He, S. -Y. Song, J. -J. Gao 2016 IEEE Transactions on Plasma Science 44 1424.

    [21]

    WANG Ganghua,XIE Long,ZHAO Hailong 2021 Explosion and Shock Waves 41 111(in Chinese) [王刚华,谢龙,赵海龙2021爆炸与冲击41 111].

    [22]

    Kuo-Ta Hsieh, Bok-Ki Kim 1997 IEEE Transactions on Magnetics 33 245.

  • [1] 王伟华. 二维有限元方法研究石墨烯环中磁等离激元. 物理学报, doi: 10.7498/aps.72.20222467
    [2] 曾滔, 董雨晨, 王天昊, 田龙, 黄楚怡, 唐健, 张俊佩, 余羿, 童欣, 樊群超. 极化中子散射零磁场屏蔽体的有限元分析. 物理学报, doi: 10.7498/aps.72.20230559
    [3] 林茜, 谢普初, 胡建波, 张凤国, 王裴, 王永刚. 不同晶粒度高纯铜层裂损伤演化的有限元模拟. 物理学报, doi: 10.7498/aps.70.20210726
    [4] 王存海, 郑树, 张欣欣. 非规则形状介质内辐射-导热耦合传热的间断有限元求解. 物理学报, doi: 10.7498/aps.69.20191185
    [5] 张忠宇, 姚熊亮, 张阿漫. 基于间断有限元方法的并列圆柱层流流动特性. 物理学报, doi: 10.7498/aps.65.084701
    [6] 张保磊, 王家序, 肖科, 李俊阳. 石墨烯-纳米探针相互作用有限元准静态计算. 物理学报, doi: 10.7498/aps.63.154601
    [7] 陆海鹏, 韩满贵, 邓龙江, 梁迪飞, 欧雨. Co纳米线磁矩反转动态过程的有限元微磁学模拟. 物理学报, doi: 10.7498/aps.59.2090
    [8] 和兴锁, 邓峰岩, 吴根勇, 王睿. 对于具有大范围运动和非线性变形的柔性梁的有限元动力学建模. 物理学报, doi: 10.7498/aps.59.25
    [9] 王天琪, 俞重远, 刘玉敏, 芦鹏飞. 有限元法分析不同形状量子点的应变能及弛豫度变化. 物理学报, doi: 10.7498/aps.58.5618
    [10] 周旺民, 蔡承宇, 王崇愚, 尹姝媛. 埋置量子点应力分布的有限元分析. 物理学报, doi: 10.7498/aps.58.5585
    [11] 冯永平, 崔俊芝, 邓明香. 周期孔洞区域中热力耦合问题的双尺度有限元计算. 物理学报, doi: 10.7498/aps.58.327
    [12] 陈云, 康秀红, 李殿中. 自由枝晶生长相场模型的自适应有限元法模拟. 物理学报, doi: 10.7498/aps.58.390
    [13] 韩奇钢, 贾晓鹏, 马红安, 李瑞, 张聪, 李战厂, 田宇. 基于三维有限元法模拟分析六面顶顶锤的热应力. 物理学报, doi: 10.7498/aps.58.4812
    [14] 孙宏祥, 许伯强, 王纪俊, 徐桂东, 徐晨光, 王峰. 激光激发黏弹表面波有限元数值模拟. 物理学报, doi: 10.7498/aps.58.6344
    [15] 汤 波, 李俊峰, 王天舒. 水珠滴落的最小二乘粒子有限元方法模拟. 物理学报, doi: 10.7498/aps.57.6722
    [16] 梁 双, 吕燕伍. 有限元法计算GaN/AlN量子点结构中的电子结构. 物理学报, doi: 10.7498/aps.56.1617
    [17] 王新军, 王玲玲, 黄维清, 唐黎明, 邹炳锁, 陈克求. 三元合金缺陷层对有限超晶格中局域界面光学声子模的影响. 物理学报, doi: 10.7498/aps.56.429
    [18] 赵 艳, 沈中华, 陆 建, 倪晓武. 激光在管道中激发周向导波的有限元模拟. 物理学报, doi: 10.7498/aps.56.321
    [19] 张宏伟, 荣传兵, 张 健, 张绍英, 沈保根. 纳米晶永磁Pr2Fe14B微磁学有限元法的模拟计算研究. 物理学报, doi: 10.7498/aps.52.718
    [20] 杜启振, 杨慧珠. 方位各向异性黏弹性介质波场有限元模拟. 物理学报, doi: 10.7498/aps.52.2010
计量
  • 文章访问数:  191
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2024-03-19

/

返回文章
返回