搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

透明可开关的超宽带频率选择表面电磁屏蔽研究

王成蓉 唐莉 周艳萍 赵翔 刘长军 闫丽萍

引用本文:
Citation:

透明可开关的超宽带频率选择表面电磁屏蔽研究

王成蓉, 唐莉, 周艳萍, 赵翔, 刘长军, 闫丽萍

Switchable and Optically Transparent Ultrawide Stopband Frequency Selective Surface for Electromagnetic Shielding

Wang Cheng-Rong, Tang Li, Zhou Yan-Ping, Zhao Xiang, Liu Chang-Jun, Yan Li-Ping
PDF
导出引用
  • 高频电磁波主要通过玻璃门窗进入建筑物内部,设计具有光学透明且屏蔽功能可开关的超宽带电磁屏蔽体,对同时需要电磁安全和采光的特定场所具有重要工程应用价值。本文利用液态金属的流动性,提出了一种透明可开关电磁屏蔽体的设计新思路。利用液态金属流动性作为电磁屏蔽的切换开关,利用其导电性及Ω形频率选择表面(FSS)结构设计实现超宽带电磁屏蔽。该FSS结构由三层透明材料构成,中间层为聚甲基丙烯酸甲酯(PMMA),顶层和底层为聚二甲基硅氧烷(PDMS),且其中嵌有正交排列的Ω型微通道。通过对微通道中注入液态金属,可将该FSS结构的频率响应从全通状态切换到带阻状态。双层Ω型微通道设计可增强液态金属的流动性并减半其用量,同时实现18.1 GHz以下(覆盖P、L、S、C、X和Ku波段)超宽带电磁干扰抑制,且具有高达80°的极化角度稳定性。所设计的FSS电磁屏蔽结构单元81 %的面积未覆盖金属,可获得良好的光学透明性。通过仿真计算TE和TM两种极化方式下的反射系数和吸收率,深入分析了所设计结构的超宽阻带和高角度稳定性机理。对所设计结构进行制备和实验测试,测试结果与仿真结果基本吻合,验证了所设计FSS结构的超宽带电磁屏蔽性能。
    Given that high frequency electromagnetic waves primarily enter buildings through windows and glass doors, there is an increasing need for switchable optically-transparent shielding with broad stopband. Herein, A novel design for a switchable and optically transparent frequency selective surface (FSS) with ultrawide-stopband is presented in this study. The structure consists of a polymethyl methacrylate (PMMA) layer sandwiched between polydimethylsiloxane (PDMS) layers which contain liquid metal microchannels arranged in an orthogonal Ω-shaped configuration. The mobility of the liquid metal allows for switching the FSS response from an all-pass to an ultrawide bandstop behavior. The proposed FSS achieves a rejection bandwidth of 18.1 GHz that covers P, L, S, C, X and Ku bands, while maintaining a transparency of 81 % and high angular stability up to 80°, regardless of polarization. Furthermore, the mechanism underlying the ultrawide stopband and high angular stability is explored through an analysis of reflection and absorption for both TE and TM polarizations. Experimental validation under both normal and oblique incidence demonstrates the ultrawide-stopband performance of the fabricated FSS.
  • [1]

    B. A. Munk, 2000 Frequency Selective Surfaces:Theory and Design (New York, NY, USA:Wiley) p63

    [2]

    Wang D J, Sun Z H, Zhang Y, Tang L, Yan L P 2024 Acta Phys. Sin. 73 024201 (in Chinese)[王东俊,孙子涵,张袁,唐莉,闫丽萍 2024 物理学报 73 024201]

    [3]

    Zhao Y T, Li Y S, Yang G H 2020 Acta Phys. Sin. 69 198101 (in Chinese)[赵宇婷,李迎松,杨国辉 2020物理学报 69 198101]

    [4]

    Liao W J, Zhang W Y, Hou Y C, Chen S T, Kuo C Y, Chou M 2019 IEEE Antennas Wirel. Propag. Lett. 18 2076

    [5]

    Feng K S, Li N, Li T 2022 Acta Phys. Sin. 71 034101 (in Chinese)[冯奎胜,李娜,李桐2022 物理学报71 034101]

    [6]

    Chiu C N, Chang Y C, Hsieh H C, Chen C H 2010 IEEE Trans. Electromagn. Compat. 52 56

    [7]

    Li D, Li T W, Li E P, Zhang Y J 2018 IEEE Trans. Electromagn. Compat. 60 768

    [8]

    Nauman M, Saleem R, Rashid A K, Shafique M F 2016 IEEE Trans. Electromagn. Compat.58 419

    [9]

    Yin W Y, Zhang H, Zhong T, Min X L 2018 IEEE Trans. Electromagn. Compat. 60 2057

    [10]

    Chaluvadi M, Kanth V K, Thomas KG 2020 IEEE Trans. Electromagn. Compat.62 1068

    [11]

    Yong W Y, Rahim S K A, Himdi M, Seman F C, Suong D L, Ramli M R, Elmobarak H A 2018 IEEE Access. 6 11657

    [12]

    Chaudhary V, Panwar R 2021 IEEE Trans. Magn. 57 2800710

    [13]

    Abirami B S, Sundarsingh E F, Ramalingam V S 2020 IEEE Trans. Electromagn. Compat. 62 2643

    [14]

    Sanjeev Y, Prakash J C, Mohan S M 2019 IEEE Trans. Electromagn. Compat. 61 887

    [15]

    Yang Y, Li W, Salama K N, Shamim A 2021 IEEE Trans. Antennas Propag. 69 2779

    [16]

    Lei Q Y, Luo Z L, Zheng X Y, Lu N, Zhang Y M, Huang J F, Yang L, Gao S M, Liang Y Y, He S L 2023 Opt. Mater. Express. 13 469

    [17]

    Guo Q X, Peng Q Y, Qu M J, Su J X, Li Z R 2022 Opt. Express30 7793

    [18]

    Zhang Y Q, Dong H X, Mou N L, Chen L L, Li R H, Zhang L 2020 Opt. Express. 28 26836

    [19]

    Jiang H, Yang W, Lei S, Hu H, Chen B, Bao Y, He Z 2021 Opt. Express. 29 29439

    [20]

    Dewani A A, O'Keefe S G, Thiel D V, Galehdar A 2018 IEEE Trans. Antennas Propag. 66 790

    [21]

    Habib S, Kiani G I, Butt M F U 2019 IEEE Access. 7 65075

    [22]

    Xu, S J, Li Y, Ahmed M, Fang L D, Jin N, Li B H, Huo S Y, Lei X Y, Sun Z, Yu H Y, Li E P 2021 IEEE Access. 9 161854

    [23]

    Syed I S, Ranga Y, Matekovits L, Esselle K P, Hay S 2014 IEEE Trans. Electromagn. Compat. 56 1404

    [24]

    Katoch K, Jaglan N, Gupta S D 2021 IEEE Trans. Electromagn. Compat. 63 1423

    [25]

    Li P, Liu W, Ren Z, Meng W, Song L2022 IEEE Access. 10 9446

    [26]

    Zhou S H, Fang X Y, Li M M, Yu Y F, Chen R S 2020 Acta Phys. Sin. 69 204101 (in Chinese)[周仕浩,房欣宇,李猛猛,俞叶峰,陈如山2020物理学报 69 204101]

    [27]

    Lei B J, Zamora A, Chun T F, Ohta A T, Shiroma W A. 2011 IEEE Microw. Wirel. Compon. Lett. 21 465

    [28]

    Ghosh S, Srivastava K V 2018 IEEE Trans. Electromagn. Compat. 60 166

    [29]

    Saikia M, Srivastava K V, Ramakrishna S A 2020 IEEE Trans. Antennas Propag. 68 2937

    [30]

    Sivasamy R, Moorthy B, Kanagasabai M, Samsingh V R, Alsath M G N 2018 IEEE Trans. Electromagn. Compat.60 280

    [31]

    Han P, Wang J, Wang J F, Ma H, Shao T Q, Chen H Y, Zhang J Q, Qu S B 2016 Acta Phys. Sin. 65 197701 (in Chinese)[韩鹏,王军,王甲富,马华,邵腾强,陈红雅, 张介秋,屈绍波. 2016物理学报 65 197701]

    [32]

    Ghosh S, Lim S 2018 IEEE Trans. Antennas Propag. 66, 4953

    [33]

    Wang C R, Yan L P, Sun Z H, Yang Y, Zhao X 2022 Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC), Beijing, China, September 1-4, 2022 p669

    [34]

    Sheikh S 2016 IEEE Antennas Wirel. Propag. Lett. 15 1661

    [35]

    Ghosh S, Lim S 2018 IEEE Trans. Microw. Theory Tech.66 3857

    [36]

    Yan L P, Xu L L, Gao R X K, Zhang J H, Yang X P, Zhao X 2022 IEEE Trans. Electromagn. Compat. 64 251

  • [1] 金英捷, 耿德路, 林茂杰, 胡亮, 魏炳波. 静电悬浮条件下液态Zr60Ni25Al15合金的热物理性质与快速凝固机制. 物理学报, doi: 10.7498/aps.73.20232002
    [2] 李子杨, 杨霄, 刘华松, 姜玉刚, 白金林, 李士达, 杨仕琪, 苏建忠. 低光学衍射随机六元环金属网络导电膜. 物理学报, doi: 10.7498/aps.71.20212010
    [3] 曹春蕾, 何孝天, 马骁婧, 徐进良. 液态金属软表面池沸腾传热的实验研究. 物理学报, doi: 10.7498/aps.70.20202053
    [4] 白婉欣, 李天乐, 郭安琪, 成睿琦, 焦重庆. 平面波照射下无限大导体板上周期孔阵屏蔽效能的解析研究. 物理学报, doi: 10.7498/aps.68.20182070
    [5] 王岩松, 高劲松, 徐念喜, 汤洋, 陈新. 具有陡降特性的新型混合单元频率选择表面. 物理学报, doi: 10.7498/aps.63.078402
    [6] 袁子东, 高军, 曹祥玉, 杨欢欢, 杨群, 李文强, 商楷. 一种性能稳定的新型频率选择表面及其微带天线应用. 物理学报, doi: 10.7498/aps.63.014102
    [7] 焦重庆, 李月月. 开孔矩形腔体电磁泄漏特性的解析研究. 物理学报, doi: 10.7498/aps.63.214103
    [8] 夏步刚, 张德海, 孟进, 赵鑫. 毫米波二阶分形频率选择表面寄生谐振的抑制. 物理学报, doi: 10.7498/aps.62.174103
    [9] 王秀芝, 高劲松, 徐念喜. 利用集总LC元件实现频率选择表面极化分离的特性. 物理学报, doi: 10.7498/aps.62.147307
    [10] 焦健, 徐念喜, 冯晓国, 梁凤超, 赵晶丽, 高劲松. 基于互补屏的主动频率选择表面设计研究. 物理学报, doi: 10.7498/aps.62.167306
    [11] 王秀芝, 高劲松, 徐念喜. Ku/Ka波段双通带频率选择表面设计研究. 物理学报, doi: 10.7498/aps.62.167307
    [12] 焦重庆, 牛帅. 开孔矩形腔体的近场电磁屏蔽效能研究. 物理学报, doi: 10.7498/aps.62.114102
    [13] 张建, 高劲松, 徐念喜. 光学透明频率选择表面的设计研究. 物理学报, doi: 10.7498/aps.62.147304
    [14] 牛帅, 焦重庆, 李琳. 中等导电性材料覆盖的金属腔体的电磁屏蔽效能研究. 物理学报, doi: 10.7498/aps.62.214102
    [15] 弭光宝, 李培杰, 黄旭, 曹春晓. 液态结构与性质关系Ⅲ剩余键理论模型. 物理学报, doi: 10.7498/aps.61.186106
    [16] 焦重庆, 齐磊. 平面波照射下开孔矩形腔体的电磁耦合与屏蔽效能研究. 物理学报, doi: 10.7498/aps.61.134104
    [17] 陈谦, 江建军, 别少伟, 王鹏, 刘鹏, 徐欣欣. 含有源频率选择表面可调复合吸波体. 物理学报, doi: 10.7498/aps.60.074202
    [18] 高劲松, 王珊珊, 冯晓国, 徐念喜, 赵晶丽, 陈红. 二阶Y环频率选择表面的设计研究. 物理学报, doi: 10.7498/aps.59.7338
    [19] 张明晓, 田学雷, 郭风祥. 电磁感应式液固态金属电阻率定性测量装置及应用. 物理学报, doi: 10.7498/aps.58.6080
    [20] 李小秋, 冯晓国, 高劲松. 光学透明频率选择表面的研究. 物理学报, doi: 10.7498/aps.57.3193
计量
  • 文章访问数:  125
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 上网日期:  2024-05-08

/

返回文章
返回