-
采用对称约简的分析方法,得出了变系数Ginzburg-Landau方程的抛物渐近自相似脉冲解析解的一般表达式.给出了二阶色散系数纵向双曲型变化和纵向指数型变化的色散渐减光纤中自相似脉冲的振幅、啁啾以及脉冲宽度的具体形式,并与数值解进行了对比,其结果符合得很好.从而证实了稀土元素掺杂的色散渐减光纤中,在增益色散因子的影响下,脉冲的演化具有抛物型自相似特性.
-
关键词:
- Ginzburg-Landau方程 /
- 自相似脉冲 /
- 色散渐减光纤 /
- 正常GVD
Using the method based on the technique of symmetry reduction, we find the general analytical parabolic asymptotic self-similar solutions for the varying coefficient of Ginzburg-Landau equation that take consideration of the influence of the doped fiber retarding time. The parabolic asymptotic amplitude function, change of strict linear phase chirp and the effective temporal pulse width of self-similar pulse with gain dispersion are given for the dispersion decreasing fibers with longitudinal exponential distribution and hyperbolic distribution. And these theoretical results have been confirmed by numerical simulation in this paper.-
Keywords:
- Ginzburg-Landau equation /
- parabolic asymptotic self-similarity /
- dispersion decreasing fiber /
- normal group velocity dispersion
计量
- 文章访问数: 9535
- PDF下载量: 1311
- 被引次数: 0