搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用径向呼吸模及其倍频模的共振特性精确测定单壁碳纳米管的电子跃迁能量

张俊 谭平恒 赵伟杰

利用径向呼吸模及其倍频模的共振特性精确测定单壁碳纳米管的电子跃迁能量

张俊, 谭平恒, 赵伟杰
PDF
导出引用
导出核心图
  • 提出一个根据拉曼基频模及其倍频模的斯托克斯和反斯托克斯拉曼成分的不同共振行为来探测样品与激光共振的系统能级的方法.此方法被应用到不均匀单壁碳纳米管束样品中某一径向呼吸模频率为219波数的金属型碳纳米管.通过分析呼吸模及其倍频模和切向模的共振行为,获得了该碳纳米管的电子跃迁能量,并获得纳米管C-C最近邻重叠积分因子为2.80 eV.此数值可以很好的解释单壁碳纳米管径向呼吸模的共振行为.
    • 基金项目: 国家自然科学基金(批准号:10404029)资助的课题.
    [1]

    Dresselhaus M S, Dresselhaus G, Eklund P C, 1996 Science of Fullerenes and Carbon Nanotubes (San Diego: Academic)

    [2]

    Saito R, Fujita M, Dresselhaus G, Dresselhaus M S 1992 Appl. Phys. Lett. 60 2204

    [3]

    Wang F, Dukovic G, Brus L E, Heinz T F 2005 Science 308 838

    [4]

    Tan P H, Rozhin A G, Hasan T, Hu P, Scardaci V, Milne W I, Ferrari A C 2007 Phys. Rev. Lett. 99 137402

    [5]

    Rao A M, Richter E, Bandow S J, Chase B, Eklund P C, Williams K A, Fang S, Subbaswamy K R, Menon M, Thess A, Smalley R E, Dresselhaus G, Dresselhaus M S 1997 Science 275 187

    [6]

    Charlier J C, Lambin P 1998 Phys. Rev. B 57 R15037

    [7]

    White C T, Mintmire J W 1998 Nature 394 29

    [8]

    Mintmire J W, White C T 1995 Carbon 33 893

    [9]

    Jishi R A, Inomata D, Nakao K, Dresselhaus M S, Dresselhaus G 1994 J. Phys. Soc. Jpn. 63 2252

    [10]

    Wilder J W G, Venema L C, Rinzler A G, Smalley R E, Dekker C 1998 Nature 391 59

    [11]

    Odom T W, Huang J L, Kim P, Leiber C M 1998 Nature 391 62

    [12]

    Pimenta M A, Marucci A, Empedocles S A, Bawendi M G, Hanlon E B, Rao A M, Eklund P C, Smalley R E, Dresselhaus G, Dresselhaus M S 1998 Phys. Rev. B 58 R16016

    [13]

    Rafailov P M, Jantoljak H, Thomsen C 2000 Phys. Rev. B 61 16719

    [14]

    Kataura K, Kumazawa Y, Maniwa Y, Umezu I, Suzuki S, Ohtsuka Y, Achiba Y 1999 Synth. Met. 103 2555

    [15]

    Xiao Y, Yan X H, Cao J X, Ding J W 2003 Acta. Phys. Sin. 52 1720 (in Chinese)[肖 杨、颜晓红、曹觉先、丁建文 2003 物理学报 52 1720]

    [16]

    Wu Y Z, Yu P, Wang Y F, Jing Q H, Ding D T, Lan G X 2005 Acta. Phys. Sin. 54 5262 (in Chinese)[吴延昭、于 平、王玉芳、金庆华、丁大同、蓝国祥 2005 物理学报 54 5262]

    [17]

    Kuzmany H, Burger B, Hulman M, Kurti J 1998 Eu-rophys. Lett. 44 518

    [18]

    Brown S D M, Corio P, Marucci A, Dresselhaus M S, Pimenta M A, Kneipp K 2000 Phys. Rev. B 61 R5137

    [19]

    Kneipp K, Kneipp H, Corio P, Brown S D M, Shafer K, Motz J, Perelman L T, Hanlon E B, Marucci A, Dresselhaus G, Dresselhaus M S 2000 Phys.Rev.Lett. 84 3470

    [20]

    Milnera M, Kürti J, Hulman M, Kuzmany H 2000 Phys.Rev.Lett. 84 1324

    [21]

    Tan P H, Tang Y, Hu C Y, Li F, Wei Y L, Cheng H M 2000 Phys. Rev. B 62 5186

    [22]

    Kürti J, Kresse G, Kuzmany H 1998 Phys. Rev. B 58 R8869

    [23]

    Henrard L, Hernandez E, Bernier P, Rubio A 1999 Phys. Rev. B 60 R8521

    [24]

    Maultzsch J, Telg H, Reich S, Thomsen C 2005 Phys. Rev. B 72 205438

    [25]

    Son H, Reina A, Samsonidze G G, Saito R, Jorio A, Dresselhaus M S, Kong J 2006 Phys. Rev. B 74 073406

    [26]

    Telg H, Maultzsch J, Reich S, Thomsen C 2006 Phys. Rev. B 74 115415

    [27]

    Filho A G S, Chou S G, Samsonidze G G, Dresselhaus G, Dresselhaus M S, Lei A, Liu J, Swan A K, Unlu M S, Goldberg B B, Jorio A, Gruneis A, Saito R 2004 Phys. Rev. B 69 115428

    [28]

    Duesberg G S, Blau W J, Byrne H J, Blau W J, Byrne H J, Muster J, Burghard M, Roth S 1999 Chem. Phys. Lett. 310 8

    [29]

    Thess A, Lee A, Nikolaev P, Dai H J, Petit P, Robert J, Xu C H, Lee Y H, Kim S G, Rinzler A G, Colbert D T, Scuseria G E, Tomanek D, Fischer J E, Smalley R E 1996 Science 273 483

    [30]

    Tan P H, Deng Y M, Zhao Q 1998 Phys. Rev. B 58 5435

    [31]

    Thomsen C, Reich S 2000 Phys.Rev.Lett. 85 5214

    [32]

    Tan P H, Hu C Y, Dong J, Shen W C, Zhang B F 2001 Phys. Rev. B 64 214301

    [33]

    Zhang S L, Hu X H, Li H D, Shi Z J, Yue K T, Zi J, Gu Z N, Wu X H, Lian Z L, Zhan Y, Huang F M, Zhou L X, ZHang Y G, Iijima S 2002 Phys. Rev. B 66 035413

    [34]

    Saito R, Jorio A, Filho A G S, Dresselhaus G, Dresselhaus M S, Pimenta M A 2002 Phys.Rev.Lett. 88 027401

    [35]

    Jorio A, Dresselhaus G, Dresselhaus M S, Souza M, Dantas M S S, Pimenta M A, Rao A M, Saito R, Liu C, Cheng H M 2000 Phys. Rev. Lett. 85 2617

    [36]

    Saito R, Dresselhaus M S, Dresselhaus G 1998 Physical Properties of Carbon Nanotubes (London: Imperial College Press)

    [37]

    Reich R, Thomsen C 2000 Phys. Rev. B 62 4273

  • [1]

    Dresselhaus M S, Dresselhaus G, Eklund P C, 1996 Science of Fullerenes and Carbon Nanotubes (San Diego: Academic)

    [2]

    Saito R, Fujita M, Dresselhaus G, Dresselhaus M S 1992 Appl. Phys. Lett. 60 2204

    [3]

    Wang F, Dukovic G, Brus L E, Heinz T F 2005 Science 308 838

    [4]

    Tan P H, Rozhin A G, Hasan T, Hu P, Scardaci V, Milne W I, Ferrari A C 2007 Phys. Rev. Lett. 99 137402

    [5]

    Rao A M, Richter E, Bandow S J, Chase B, Eklund P C, Williams K A, Fang S, Subbaswamy K R, Menon M, Thess A, Smalley R E, Dresselhaus G, Dresselhaus M S 1997 Science 275 187

    [6]

    Charlier J C, Lambin P 1998 Phys. Rev. B 57 R15037

    [7]

    White C T, Mintmire J W 1998 Nature 394 29

    [8]

    Mintmire J W, White C T 1995 Carbon 33 893

    [9]

    Jishi R A, Inomata D, Nakao K, Dresselhaus M S, Dresselhaus G 1994 J. Phys. Soc. Jpn. 63 2252

    [10]

    Wilder J W G, Venema L C, Rinzler A G, Smalley R E, Dekker C 1998 Nature 391 59

    [11]

    Odom T W, Huang J L, Kim P, Leiber C M 1998 Nature 391 62

    [12]

    Pimenta M A, Marucci A, Empedocles S A, Bawendi M G, Hanlon E B, Rao A M, Eklund P C, Smalley R E, Dresselhaus G, Dresselhaus M S 1998 Phys. Rev. B 58 R16016

    [13]

    Rafailov P M, Jantoljak H, Thomsen C 2000 Phys. Rev. B 61 16719

    [14]

    Kataura K, Kumazawa Y, Maniwa Y, Umezu I, Suzuki S, Ohtsuka Y, Achiba Y 1999 Synth. Met. 103 2555

    [15]

    Xiao Y, Yan X H, Cao J X, Ding J W 2003 Acta. Phys. Sin. 52 1720 (in Chinese)[肖 杨、颜晓红、曹觉先、丁建文 2003 物理学报 52 1720]

    [16]

    Wu Y Z, Yu P, Wang Y F, Jing Q H, Ding D T, Lan G X 2005 Acta. Phys. Sin. 54 5262 (in Chinese)[吴延昭、于 平、王玉芳、金庆华、丁大同、蓝国祥 2005 物理学报 54 5262]

    [17]

    Kuzmany H, Burger B, Hulman M, Kurti J 1998 Eu-rophys. Lett. 44 518

    [18]

    Brown S D M, Corio P, Marucci A, Dresselhaus M S, Pimenta M A, Kneipp K 2000 Phys. Rev. B 61 R5137

    [19]

    Kneipp K, Kneipp H, Corio P, Brown S D M, Shafer K, Motz J, Perelman L T, Hanlon E B, Marucci A, Dresselhaus G, Dresselhaus M S 2000 Phys.Rev.Lett. 84 3470

    [20]

    Milnera M, Kürti J, Hulman M, Kuzmany H 2000 Phys.Rev.Lett. 84 1324

    [21]

    Tan P H, Tang Y, Hu C Y, Li F, Wei Y L, Cheng H M 2000 Phys. Rev. B 62 5186

    [22]

    Kürti J, Kresse G, Kuzmany H 1998 Phys. Rev. B 58 R8869

    [23]

    Henrard L, Hernandez E, Bernier P, Rubio A 1999 Phys. Rev. B 60 R8521

    [24]

    Maultzsch J, Telg H, Reich S, Thomsen C 2005 Phys. Rev. B 72 205438

    [25]

    Son H, Reina A, Samsonidze G G, Saito R, Jorio A, Dresselhaus M S, Kong J 2006 Phys. Rev. B 74 073406

    [26]

    Telg H, Maultzsch J, Reich S, Thomsen C 2006 Phys. Rev. B 74 115415

    [27]

    Filho A G S, Chou S G, Samsonidze G G, Dresselhaus G, Dresselhaus M S, Lei A, Liu J, Swan A K, Unlu M S, Goldberg B B, Jorio A, Gruneis A, Saito R 2004 Phys. Rev. B 69 115428

    [28]

    Duesberg G S, Blau W J, Byrne H J, Blau W J, Byrne H J, Muster J, Burghard M, Roth S 1999 Chem. Phys. Lett. 310 8

    [29]

    Thess A, Lee A, Nikolaev P, Dai H J, Petit P, Robert J, Xu C H, Lee Y H, Kim S G, Rinzler A G, Colbert D T, Scuseria G E, Tomanek D, Fischer J E, Smalley R E 1996 Science 273 483

    [30]

    Tan P H, Deng Y M, Zhao Q 1998 Phys. Rev. B 58 5435

    [31]

    Thomsen C, Reich S 2000 Phys.Rev.Lett. 85 5214

    [32]

    Tan P H, Hu C Y, Dong J, Shen W C, Zhang B F 2001 Phys. Rev. B 64 214301

    [33]

    Zhang S L, Hu X H, Li H D, Shi Z J, Yue K T, Zi J, Gu Z N, Wu X H, Lian Z L, Zhan Y, Huang F M, Zhou L X, ZHang Y G, Iijima S 2002 Phys. Rev. B 66 035413

    [34]

    Saito R, Jorio A, Filho A G S, Dresselhaus G, Dresselhaus M S, Pimenta M A 2002 Phys.Rev.Lett. 88 027401

    [35]

    Jorio A, Dresselhaus G, Dresselhaus M S, Souza M, Dantas M S S, Pimenta M A, Rao A M, Saito R, Liu C, Cheng H M 2000 Phys. Rev. Lett. 85 2617

    [36]

    Saito R, Dresselhaus M S, Dresselhaus G 1998 Physical Properties of Carbon Nanotubes (London: Imperial College Press)

    [37]

    Reich R, Thomsen C 2000 Phys. Rev. B 62 4273

  • [1] 彭 平, 梁君武, 胡慧芳, 韦建卫. 氧吸附对单壁碳纳米管的电子结构和光学性能的影响. 物理学报, 2005, 54(6): 2877-2882. doi: 10.7498/aps.54.2877
    [2] 秦威, 张振华, 刘新海. 卷曲效应对单壁碳纳米管电子结构的影响. 物理学报, 2011, 60(12): 127303. doi: 10.7498/aps.60.127303
    [3] 陈有为, 郑继明, 任兆玉, 赵佩, 郭平. 单壁碳纳米管吸附氧分子的电子输运性质理论研究. 物理学报, 2011, 60(6): 068501. doi: 10.7498/aps.60.068501
    [4] 李论雄, 苏江滨, 吴燕, 朱贤方, 王占国. 电子束诱导单壁碳纳米管不稳定的新观察. 物理学报, 2012, 61(3): 036401. doi: 10.7498/aps.61.036401
    [5] 陆 地, 颜晓红, 丁建文. 单壁碳纳米管中电子的有效质量. 物理学报, 2004, 53(2): 527-530. doi: 10.7498/aps.53.527
    [6] 张丽娟, 胡慧芳, 王志勇, 陈南庭, 谢能, 林冰冰. 含氮SW缺陷对单壁碳纳米管电子结构和光学性质的影响. 物理学报, 2011, 60(7): 077209. doi: 10.7498/aps.60.077209
    [7] 令维军, 夏涛, 董忠, 左银艳, 李可, 刘勍, 路飞平, 赵小龙, 王勇刚. 基于单壁碳纳米管调Q锁模低阈值Tm,Ho:LiLuF4激光器. 物理学报, 2018, 67(1): 014201. doi: 10.7498/aps.67.20171748
    [8] 王莎莎, 潘玉寨, 高仁喜, 祝秀芬, 苏晓慧, 曲士良. 碳纳米管锁模双包层光纤激光器的实验研究. 物理学报, 2013, 62(2): 024209. doi: 10.7498/aps.62.024209
    [9] 董信征, 于振华, 田金荣, 李彦林, 窦志远, 胡梦婷, 宋晏蓉. 147 fs碳纳米管倏逝场锁模全光纤掺铒光纤激光器. 物理学报, 2014, 63(3): 034202. doi: 10.7498/aps.63.034202
    [10] 江兆潭, 杨杰, 董全力, 张杰. 自旋轨道耦合作用对碳纳米管电子能带结构的影响. 物理学报, 2011, 60(7): 075202. doi: 10.7498/aps.60.075202
    [11] 陈祥磊, 郗传英, 叶邦角, 翁惠民. 碳纳米管束中的正电子理论. 物理学报, 2007, 56(11): 6695-6700. doi: 10.7498/aps.56.6695
    [12] 黄仕华, 莫玉东. Hg1-xCdxTe的共振拉曼散射. 物理学报, 2001, 50(5): 964-967. doi: 10.7498/aps.50.964
    [13] 李振华, 马燕萍, 尚学府, 顾智企, 王 淼, 徐亚伯. 单壁碳纳米管在场发射显示器中的应用研究. 物理学报, 2007, 56(11): 6701-6704. doi: 10.7498/aps.56.6701
    [14] 牛志强, 方 炎. 催化剂组分对制备单壁碳纳米管的影响. 物理学报, 2007, 56(3): 1796-1801. doi: 10.7498/aps.56.1796
    [15] 孙建平, 张兆祥, 侯士敏, 赵兴钰, 刘惟敏, 薛增泉, 施祖进, 顾镇南. 用场发射显微镜研究单壁碳纳米管场发射. 物理学报, 2001, 50(9): 1805-1809. doi: 10.7498/aps.50.1805
    [16] Y. T. Zhu, 唐大伟, 王照亮, 梁金国. 单根单壁碳纳米管导热系数随长度变化尺度效应的实验和理论. 物理学报, 2008, 57(6): 3391-3396. doi: 10.7498/aps.57.3391
    [17] 王昆鹏, 师春生, 赵乃勤, 杜希文. B(N)掺杂单壁碳纳米管的Al原子吸附性能的第一性原理研究. 物理学报, 2008, 57(12): 7833-7840. doi: 10.7498/aps.57.7833
    [18] 徐慧, 肖金, 欧阳方平. 扶手椅型单壁碳纳米管中的B/N对共掺杂. 物理学报, 2010, 59(6): 4186-4193. doi: 10.7498/aps.59.4186
    [19] 沈超, 胡雅婷, 周硕, 马晓兰, 李华. 单壁碳纳米管低温及常温下储氢行为的模拟计算研究. 物理学报, 2013, 62(3): 038801. doi: 10.7498/aps.62.038801
    [20] 张兆祥, 张耿民, 侯士敏, 张 浩, 刘惟敏, 赵兴钰, 薛增泉, 顾镇南. 利用场发射显微镜研究O2对单壁碳纳米管场发射的影响. 物理学报, 2003, 52(5): 1282-1286. doi: 10.7498/aps.52.1282
  • 引用本文:
    Citation:
计量
  • 文章访问数:  4135
  • PDF下载量:  797
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-02-05
  • 修回日期:  2010-03-16
  • 刊出日期:  2010-11-15

利用径向呼吸模及其倍频模的共振特性精确测定单壁碳纳米管的电子跃迁能量

  • 1. 半导体超晶格国家重点实验室,中国科学院半导体研究所,北京 100083
    基金项目: 

    国家自然科学基金(批准号:10404029)资助的课题.

摘要: 提出一个根据拉曼基频模及其倍频模的斯托克斯和反斯托克斯拉曼成分的不同共振行为来探测样品与激光共振的系统能级的方法.此方法被应用到不均匀单壁碳纳米管束样品中某一径向呼吸模频率为219波数的金属型碳纳米管.通过分析呼吸模及其倍频模和切向模的共振行为,获得了该碳纳米管的电子跃迁能量,并获得纳米管C-C最近邻重叠积分因子为2.80 eV.此数值可以很好的解释单壁碳纳米管径向呼吸模的共振行为.

English Abstract

参考文献 (37)

目录

    /

    返回文章
    返回