搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

苝四甲酸二酐在Au(111)表面的取向生长及电子结构研究

曹亮 张文华 陈铁锌 韩玉岩 徐法强 朱俊发 闫文盛 许杨 王峰

引用本文:
Citation:

苝四甲酸二酐在Au(111)表面的取向生长及电子结构研究

曹亮, 张文华, 陈铁锌, 韩玉岩, 徐法强, 朱俊发, 闫文盛, 许杨, 王峰

The molecular orientation and electronic structure of 3, 4, 9, 10-perylene tetracarboxylic dianhydride grown on Au(111)

Cao Liang, Zhang Wen-Hua, Chen Tie-Xin, Han Yu-Yan, Xu Fa-Qiang, Zhu Jun-Fa, Yan Wen-Sheng, Xu Yang, Wang Feng
PDF
导出引用
  • 利用X射线光电子能谱(XPS),同步辐射紫外光电子能谱(SRUPS),近边X射线吸收精细结构(NEXAFS)以及原子力显微镜(AFM)等技术研究了苝四甲酸二酐(PTCDA)与Au(111)的界面电子结构、PTCDA分子取向及有机薄膜的表面形貌. SRUPS价带谱显示,伴随PTCDA分子的微量沉积(05 ML),位于费米能级附近Au的表面电子态迅速消失,但却观察不到明显的界面杂化态,这说明PTCDA分子和Au(111)界面间存在弱电子传输过程,但并没有发生明显的化学反应. 角分辨NEXAFS以及SRUPS
    The interface electronic structure, molecular orientation and surface morphology of the organic semiconductor 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA) grown on Au (111) surface have been studied by means of X-ray photoelectron spectroscopy (XPS), synchrotron radiation ultraviolet photoelectron spectroscopy (SRUPS), near edge X-ray absorption fine structure spectroscopy (NEXAFS) and atomic force microscopy (AFM). It can be seen from the SRUPS results that the Shockley-type Au (111) surface state near the Fermi level extinguishes immediately after sub-monolayer of PTCDA is deposited onto the Au surface without the emergence of interface hybrid state. This indicates that a charge transfer process takes place at the interface between PTCDA molecule and Au(111), but does not lead to strong chemical reaction. Angle dependent NEXAFS and SRUPS show that the PTCDA overlayers are ordered and the molecules lie flatly on the Au(111) surface. According to the AFM images and the evolution of Au 4f7/2 and C 1s integral intensities with increasing film thickness, the typical Stranski- Krastanov growth mode is proposed for PTCDA deposition on Au(111) surface, that is, layer by layer growth followed by island growth mode. The Dewetting transition occurs between the 2D and 3D growth modes.
    • 基金项目: 国家自然科学基金(批准号:10505019,10775126)资助的课题.
    [1]

    [1]Mathine D L, Woo H S, He W, Kim T W, Kippelen B, Peyghambarian N 2000 Appl. Phys. Lett. 76 3849

    [2]

    [2]Forrest S R 1997 Chem. Rev. 97 1793

    [3]

    [3]Peisert H, Schwieger T, Auerhammer J M, Knupfer M, Golden M S, Fink J, Bressler P R, Mast M 2001 J. Appl. Phys. 90 466

    [4]

    [4]Salaneck W R, Seki K, Kahn A, Pireaux J J 2001 Conjugated polymer and molecular interfaces (New York: Springer) p156, 242

    [5]

    [5]Ishii H, Sugiyama K, Ito E, Seki K 1999 Adv. Mater. 11 605

    [6]

    [6]Temirov R, Soubatch S, Luican A , Tautz F S 2006 Nature 444 350

    [7]

    [7]Hirose Y, Kahn A, Aristov V, Soukiassian P, Bulovic V, Rorrest S R 1996 Phys. Rev. B 54 13748

    [8]

    [8]Hirose Y, Chen W, Haskal E I, Forrest S R, Kahn A 1994 Appl. Phys. Lett. 64 3482

    [9]

    [9]Eremtchenko M, Schaefer J A, Tautz F S 2004 Nature 425 602

    [10]

    ]Chen W, Huang H, Chen S, Chen L, Zhang H L, Gao X Y, Wee A T S 2007 Appl. Phys. Lett. 91 114102

    [11]

    ]Zou C W, Sun B, Wang G D, Zhang W H, Xu P S, Xu F Q, Pan H B 2005 Nucl. Techn. 28 895 (in Chinese)[邹祟文、孙柏、王国栋、张文华、徐彭寿、徐法强、潘海斌 2005 核技术 28 895]

    [12]

    ]Zhang W H, Mo X, Wang G D, Wang L W, Xu F Q, Pan H B, Shi M M, Chen H Z, Wang M 2007 Acta Phys. Sin. 56 4936 (in Chinese)[张文华、莫雄、王国栋、王立武、徐法强、潘海斌、施敏敏、陈红征、汪茫2007 物理学报 56 4936]

    [13]

    ]Mobus M, Karl N, Kobayashi T 1992 J. Crystal Growth 116 495

    [14]

    ]Hill I G, Milliron D, Schwartz J, Kahn A 2000 Appl. Surf. Sci. 166 354

    [15]

    ]Azuma Y, Hasebe T, Miyamae T, Okudaira K K,Harada Y, Seki K, Morikawa E, Saile V, Veno N 1998 J. Synchrotron Rad. 5 1004

    [16]

    ]Nicoara N, Roman E, Gomez-Rodriguez J M, Martin-Gago J A, Mendez J 2006 Org. Electr. 7 287

    [17]

    ]Duhm S, Gerlach A, Salzmann I, Broker B, Johnson R L, Schreiber F, Koch N 2008 Org. Electr. 9 111

    [18]

    ]Luth H 1995 Surfaces and Interfaces of Solid Materials (Berlin: Springer) p114

    [19]

    ]Fenter P, Burrows P E, Eisenberger P, Forrest S R 1995 J. Crystal Growth 152 65

    [20]

    ]Stohr J, Samant M G, Luning j, Callegari A C, Chaudhari P, Doyle J P, Lacey J A, Lien S A, Purushorthaman S, Speidell J L 2001 Science 292 2299

    [21]

    ]Stohr J 1996 NEXAFS spectroscopy (Berlin:Springer)p169

    [22]

    ]Taborski J, Vaterlein P, Dietz H, Zimmermann U, Umbach E 1995 Journal of Electron Spectroscopy and Related Phenomena 75 129

    [23]

    ]Zou Y, Kilian L, Scholl A, Schmidt T, Fink R, Umbach E 2006 Surf. Sci. 600 1240.

    [24]

    ]Fenter P, Schreiber F, Zhou L, Eisenberger P, Forrest S R 1997 Phys. Rev. B 56 3046

    [25]

    ]Gustafsson J B, Moons E, Widstrand S M, Johansson L S O 2004 Surf. Sci. 572 23

  • [1]

    [1]Mathine D L, Woo H S, He W, Kim T W, Kippelen B, Peyghambarian N 2000 Appl. Phys. Lett. 76 3849

    [2]

    [2]Forrest S R 1997 Chem. Rev. 97 1793

    [3]

    [3]Peisert H, Schwieger T, Auerhammer J M, Knupfer M, Golden M S, Fink J, Bressler P R, Mast M 2001 J. Appl. Phys. 90 466

    [4]

    [4]Salaneck W R, Seki K, Kahn A, Pireaux J J 2001 Conjugated polymer and molecular interfaces (New York: Springer) p156, 242

    [5]

    [5]Ishii H, Sugiyama K, Ito E, Seki K 1999 Adv. Mater. 11 605

    [6]

    [6]Temirov R, Soubatch S, Luican A , Tautz F S 2006 Nature 444 350

    [7]

    [7]Hirose Y, Kahn A, Aristov V, Soukiassian P, Bulovic V, Rorrest S R 1996 Phys. Rev. B 54 13748

    [8]

    [8]Hirose Y, Chen W, Haskal E I, Forrest S R, Kahn A 1994 Appl. Phys. Lett. 64 3482

    [9]

    [9]Eremtchenko M, Schaefer J A, Tautz F S 2004 Nature 425 602

    [10]

    ]Chen W, Huang H, Chen S, Chen L, Zhang H L, Gao X Y, Wee A T S 2007 Appl. Phys. Lett. 91 114102

    [11]

    ]Zou C W, Sun B, Wang G D, Zhang W H, Xu P S, Xu F Q, Pan H B 2005 Nucl. Techn. 28 895 (in Chinese)[邹祟文、孙柏、王国栋、张文华、徐彭寿、徐法强、潘海斌 2005 核技术 28 895]

    [12]

    ]Zhang W H, Mo X, Wang G D, Wang L W, Xu F Q, Pan H B, Shi M M, Chen H Z, Wang M 2007 Acta Phys. Sin. 56 4936 (in Chinese)[张文华、莫雄、王国栋、王立武、徐法强、潘海斌、施敏敏、陈红征、汪茫2007 物理学报 56 4936]

    [13]

    ]Mobus M, Karl N, Kobayashi T 1992 J. Crystal Growth 116 495

    [14]

    ]Hill I G, Milliron D, Schwartz J, Kahn A 2000 Appl. Surf. Sci. 166 354

    [15]

    ]Azuma Y, Hasebe T, Miyamae T, Okudaira K K,Harada Y, Seki K, Morikawa E, Saile V, Veno N 1998 J. Synchrotron Rad. 5 1004

    [16]

    ]Nicoara N, Roman E, Gomez-Rodriguez J M, Martin-Gago J A, Mendez J 2006 Org. Electr. 7 287

    [17]

    ]Duhm S, Gerlach A, Salzmann I, Broker B, Johnson R L, Schreiber F, Koch N 2008 Org. Electr. 9 111

    [18]

    ]Luth H 1995 Surfaces and Interfaces of Solid Materials (Berlin: Springer) p114

    [19]

    ]Fenter P, Burrows P E, Eisenberger P, Forrest S R 1995 J. Crystal Growth 152 65

    [20]

    ]Stohr J, Samant M G, Luning j, Callegari A C, Chaudhari P, Doyle J P, Lacey J A, Lien S A, Purushorthaman S, Speidell J L 2001 Science 292 2299

    [21]

    ]Stohr J 1996 NEXAFS spectroscopy (Berlin:Springer)p169

    [22]

    ]Taborski J, Vaterlein P, Dietz H, Zimmermann U, Umbach E 1995 Journal of Electron Spectroscopy and Related Phenomena 75 129

    [23]

    ]Zou Y, Kilian L, Scholl A, Schmidt T, Fink R, Umbach E 2006 Surf. Sci. 600 1240.

    [24]

    ]Fenter P, Schreiber F, Zhou L, Eisenberger P, Forrest S R 1997 Phys. Rev. B 56 3046

    [25]

    ]Gustafsson J B, Moons E, Widstrand S M, Johansson L S O 2004 Surf. Sci. 572 23

  • [1] 孙颖慧, 穆丛艳, 蒋文贵, 周亮, 王荣明. 金属纳米颗粒与二维材料异质结构的界面调控和物理性质. 物理学报, 2022, 71(6): 066801. doi: 10.7498/aps.71.20211902
    [2] 拱越, 谷林. 全固态电池中界面的结构演化和物质输运. 物理学报, 2020, 69(22): 226801. doi: 10.7498/aps.69.20201160
    [3] 李锐, 刘腾, 陈翔, 陈思聪, 符义红, 刘琳. 界面结构对Cu/Ni多层膜纳米压痕特性影响的分子动力学模拟. 物理学报, 2018, 67(19): 190202. doi: 10.7498/aps.67.20180958
    [4] 潘国兴, 李田, 汤国强, 张发培. 高度取向的半导体聚合物薄膜的溶液浸涂法生长及其电荷传输特性研究. 物理学报, 2017, 66(15): 156801. doi: 10.7498/aps.66.156801
    [5] 李智浩, 曹亮, 郭玉献. 苝四甲酸二酐薄膜电子结构的同步辐射共振光电子能谱研究. 物理学报, 2017, 66(22): 224101. doi: 10.7498/aps.66.224101
    [6] 张宇河, 牛冬梅, 吕路, 谢海鹏, 朱孟龙, 张红, 刘鹏, 曹宁通, 高永立. 2,7-二辛基[1]苯并噻吩并[3,2-b]苯并噻吩在Cu(100)上的吸附生长以及能级结构演化. 物理学报, 2016, 65(15): 157901. doi: 10.7498/aps.65.157901
    [7] 张红, 牛冬梅, 吕路, 谢海鹏, 张宇河, 刘鹏, 黄寒, 高永立. 2,7-二辛基[1]苯并噻吩并[3,2-b]苯并噻吩/Ni(100)的界面能级结构随薄膜厚度的演化. 物理学报, 2016, 65(4): 047902. doi: 10.7498/aps.65.047902
    [8] 黄超, 刘凌云, 方军, 张文华, 王凯, 高品, 徐法强. 强磁场对酞菁铁薄膜分子取向及形貌的影响. 物理学报, 2016, 65(15): 156101. doi: 10.7498/aps.65.156101
    [9] 潘宵, 鞠焕鑫, 冯雪飞, 范其瑭, 王嘉兴, 杨耀文, 朱俊发. F8BT薄膜表面形貌及与Al形成界面的电子结构和反应. 物理学报, 2015, 64(7): 077304. doi: 10.7498/aps.64.077304
    [10] 蔡春锋, 张兵坡, 黎瑞锋, 徐天宁, 毕岗, 吴惠桢, 张文华, 朱俊发. 利用同步辐射光电子能谱技术测量ZnO/PbTe异质结的能带带阶. 物理学报, 2014, 63(16): 167301. doi: 10.7498/aps.63.167301
    [11] 万力, 曹亮, 张文华, 韩玉岩, 陈铁锌, 刘凌云, 郭盼盼, 冯金勇, 徐法强. FePc与TiO2(110)及C60界面电子结构研究. 物理学报, 2012, 61(18): 186801. doi: 10.7498/aps.61.186801
    [12] 张旺, 徐法强, 王国栋, 张文华, 李宗木, 王立武, 陈铁锌. Fe/ZnO (0001)体系界面相互作用中薄膜厚度效应的光电子能谱研究. 物理学报, 2011, 60(1): 017104. doi: 10.7498/aps.60.017104
    [13] 冀子武, 郑雨军, 徐现刚, 鲁云. ZnSe/BeTe Ⅱ型量子阱中界面结构对发光特性的影响. 物理学报, 2010, 59(11): 7986-7990. doi: 10.7498/aps.59.7986
    [14] 杨增强, 周效信. 控制双激光脉冲的宽度提高N2分子的取向. 物理学报, 2008, 57(7): 4099-4103. doi: 10.7498/aps.57.4099
    [15] 刘 军, 侯延冰, 孙 鑫, 师全民, 李 妍, 靳 辉, 鲁 晶. 电场诱导聚合物分子取向对单线态和三线态激子形成截面的影响. 物理学报, 2007, 56(5): 2845-2851. doi: 10.7498/aps.56.2845
    [16] 王国栋, 张 旺, 张文华, 李宗木, 徐法强. Fe/ZnO(0001)界面的同步辐射光电子能谱研究. 物理学报, 2007, 56(6): 3468-3472. doi: 10.7498/aps.56.3468
    [17] 何少龙, 李宏年, 王晓雄, 李海洋, I. Kurash, 钱海杰, 苏 润, M. I. Abbas, 钟 俊, 洪才浩. Yb2.75C60同步辐射光电子能谱. 物理学报, 2005, 54(3): 1400-1405. doi: 10.7498/aps.54.1400
    [18] 吴太权, 唐景昌, 朱 萍, 李海洋. 二己二硫醚多层膜局域结构的近边x射线吸收精细结构研究. 物理学报, 2005, 54(12): 5837-5844. doi: 10.7498/aps.54.5837
    [19] 李宏年. Rb掺杂C60单晶的相衍变和电子态. 物理学报, 2004, 53(1): 248-253. doi: 10.7498/aps.53.248
    [20] 陈艳, 董国胜, 张明, 金晓峰, 陆尔东, 潘海斌, 徐彭寿, 张新夷, 范朝阳. Mn/GaAs(100)界面电子结构的同步辐射光电子能谱研究. 物理学报, 1995, 44(1): 145-151. doi: 10.7498/aps.44.145
计量
  • 文章访问数:  9872
  • PDF下载量:  1764
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-05-18
  • 修回日期:  2009-06-03
  • 刊出日期:  2010-03-15

/

返回文章
返回