搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

真空条件下激光诱导光纤损伤特性研究

胡建平 潘峰 马平 赵兴海 高杨

真空条件下激光诱导光纤损伤特性研究

胡建平, 潘峰, 马平, 赵兴海, 高杨
PDF
导出引用
导出核心图
  • 实验研究并分析了调Q Nd:YAG 脉冲激光诱导光纤损伤特性.设计了在真空条件下全石英光纤传输1064 nm 脉冲激光实验.通过将激光注入光纤端面气压降低到10—100 Pa, 光纤端面击穿阈值提高到大气环境下的185 倍.结合光纤端面损伤形貌分析可知,光纤端面损伤主要是由于激光驻波场和烧蚀共同作用的结果,光纤端面或内部大量的缺陷降低了光纤抗激光损伤的能力.在真空条件下由于光纤端面光学击穿阈值的提高,激光诱导光纤损伤特性又表现出了另外一种损伤模式——光纤初始输入段损伤.它发生在光纤输入段附
    • 基金项目: 中国工程物理研究院科学技术发展基金重点项目(批准号: 2007A05001)、国防科技预研基金(批准号: 51305070402 )和中国工程物理研究院电子工程研究所科技创新基金(批准号: S20070202) 资助的课题.
    [1]

    [1]Allison S W, Gillies G T, Magnuson D W, Pagano T S 1985 Appl. Opt. 24 3140

    [2]

    [2]Richou B, Schertz I, Gobin I, Richou J 1997 Appl. Opt. 36 1610

    [3]

    [3]Zhao X H, Gao Y, Xu M J, Duan W T, Yu H W 2007 Proc. SPIE 6825 683516

    [4]

    [4]Setchell R E 1997 Proc. SPIE 2966 608

    [5]

    [5]Setchell R E 1992 Proc. SPIE 1624 56

    [6]

    [6]Zhao X H, Gao Y, Xu M J, Duan W T, Yu H W 2008 Acta Phys. Sin. 57 5027 (in Chinese) [赵兴海、高杨、徐美健、段文涛、於海武 2008 物理学报 57 5027]

    [7]

    [7]Yang Y N, Yang B, Zhu J R, Shen Z H, Lu J, Ni X W 2007 2 Acta Phys. Sin. 56 5945 (in Chinese) [杨雁南、杨波、朱金荣、沈中华、陆建、倪晓武 2007 物理学报 56 5945]

    [8]

    [8]Zhao X H, Gao Y, Xu M J, Duan W T, Zhao X, Yu H W 2007 High Power Laser and Particle Beams 19 1627 (in Chinese) [赵兴海、高杨、徐美健、段文涛、赵翔、於海武 2007 强激光与粒子束 19 1627]

    [9]

    [9]Bergman B 1998 Mater. Sci. Lett. 3 689

    [10]

    ]Sato S, Ashida H, Arai T, Shi Y W, Matsuura Y, Miyagi M 2000 Opt. Lett. 25 49

    [11]

    ]Yuan G, Zhou G Q 1988 Chin. J. High Pressure Phys. 2 182(in Chinese) [袁钢、周光泉 1988 高压物理学报 2 182]

    [12]

    ]Man B Y, Miao Y, Guo X X, Wang X T, Zhuo Z 1997 Chin. 2 Sci. Bull. 42 997 (in Chinese) [满宝元、苗勇、郭向欣、王象泰、卓壮 1997 科学通报 42 997]

    [13]

    ]Hu J P, Zhang W H, Duan L H, Ma P, Xu Q 2006 Opt. Optoelect. Technol. 4 49 (in Chinese) [胡建平、张问辉、段利华、马平、许乔 2006 光学与光电技术 4 49]

    [14]

    ]Zhao X H, Gao Y 2008 Acta Photon. Sin. 37 1842 (in Chinese) [赵兴海、高杨 2008 光子学报 37 1842]

    [15]

    ]Hu P, Chen F L 2005 High Power Laser and Particle Beams 17 961 (in Chinese)[胡鹏、陈发良 2005 强激光与粒子束 17 961]

    [16]

    ]Bloembergen N 1973 Appl. Opt. 12 661

    [17]

    ]Xu S X, Li X S, Zhang G X 1994 Chin. J. Lasers A 21 645 (in Chinese) [徐世祥、李锡善、张国轩 1994 中国激光 A 21 645]

  • [1]

    [1]Allison S W, Gillies G T, Magnuson D W, Pagano T S 1985 Appl. Opt. 24 3140

    [2]

    [2]Richou B, Schertz I, Gobin I, Richou J 1997 Appl. Opt. 36 1610

    [3]

    [3]Zhao X H, Gao Y, Xu M J, Duan W T, Yu H W 2007 Proc. SPIE 6825 683516

    [4]

    [4]Setchell R E 1997 Proc. SPIE 2966 608

    [5]

    [5]Setchell R E 1992 Proc. SPIE 1624 56

    [6]

    [6]Zhao X H, Gao Y, Xu M J, Duan W T, Yu H W 2008 Acta Phys. Sin. 57 5027 (in Chinese) [赵兴海、高杨、徐美健、段文涛、於海武 2008 物理学报 57 5027]

    [7]

    [7]Yang Y N, Yang B, Zhu J R, Shen Z H, Lu J, Ni X W 2007 2 Acta Phys. Sin. 56 5945 (in Chinese) [杨雁南、杨波、朱金荣、沈中华、陆建、倪晓武 2007 物理学报 56 5945]

    [8]

    [8]Zhao X H, Gao Y, Xu M J, Duan W T, Zhao X, Yu H W 2007 High Power Laser and Particle Beams 19 1627 (in Chinese) [赵兴海、高杨、徐美健、段文涛、赵翔、於海武 2007 强激光与粒子束 19 1627]

    [9]

    [9]Bergman B 1998 Mater. Sci. Lett. 3 689

    [10]

    ]Sato S, Ashida H, Arai T, Shi Y W, Matsuura Y, Miyagi M 2000 Opt. Lett. 25 49

    [11]

    ]Yuan G, Zhou G Q 1988 Chin. J. High Pressure Phys. 2 182(in Chinese) [袁钢、周光泉 1988 高压物理学报 2 182]

    [12]

    ]Man B Y, Miao Y, Guo X X, Wang X T, Zhuo Z 1997 Chin. 2 Sci. Bull. 42 997 (in Chinese) [满宝元、苗勇、郭向欣、王象泰、卓壮 1997 科学通报 42 997]

    [13]

    ]Hu J P, Zhang W H, Duan L H, Ma P, Xu Q 2006 Opt. Optoelect. Technol. 4 49 (in Chinese) [胡建平、张问辉、段利华、马平、许乔 2006 光学与光电技术 4 49]

    [14]

    ]Zhao X H, Gao Y 2008 Acta Photon. Sin. 37 1842 (in Chinese) [赵兴海、高杨 2008 光子学报 37 1842]

    [15]

    ]Hu P, Chen F L 2005 High Power Laser and Particle Beams 17 961 (in Chinese)[胡鹏、陈发良 2005 强激光与粒子束 17 961]

    [16]

    ]Bloembergen N 1973 Appl. Opt. 12 661

    [17]

    ]Xu S X, Li X S, Zhang G X 1994 Chin. J. Lasers A 21 645 (in Chinese) [徐世祥、李锡善、张国轩 1994 中国激光 A 21 645]

  • [1] 刘文姝, 高润亮, 冯红梅, 刘悦悦, 黄怡, 王建波, 刘青芳. 真空磁场热处理温度对不同厚度的Ni88Cu12薄膜畴结构及磁性的影响. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191942
    [2] 钟哲强, 张彬, 母杰, 王逍. 基于紧聚焦方式的阵列光束相干合成特性分析. 物理学报, 2020, (): . doi: 10.7498/aps.69.20200034
    [3] 胡耀华, 刘艳, 穆鸽, 秦齐, 谭中伟, 王目光, 延凤平. 基于多模光纤散斑的压缩感知在光学图像加密中的应用. 物理学报, 2020, 69(3): 034203. doi: 10.7498/aps.69.20191143
    [4] 王瑜浩, 武保剑, 郭飚, 文峰, 邱昆. 基于非线性光纤环形镜的少模脉冲幅度调制再生器研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191858
    [5] 赵超樱, 范钰婷, 孟义朝, 郭奇志, 谭维翰. 圆柱型光纤螺线圈轨道角动量模式. 物理学报, 2020, 69(5): 054207. doi: 10.7498/aps.69.20190997
    [6] 周峰, 蔡宇, 邹德峰, 胡丁桐, 张亚静, 宋有建, 胡明列. 钛宝石飞秒激光器中孤子分子的内部动态探测. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191989
    [7] 罗菊, 韩敬华. 激光等离子体去除微纳颗粒的热力学研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191933
    [8] 刘家合, 鲁佳哲, 雷俊杰, 高勋, 林景全. 气体压强对纳秒激光诱导空气等离子体特性的影响. 物理学报, 2020, 69(5): 057401. doi: 10.7498/aps.69.20191540
    [9] 刘厚通, 毛敏娟. 一种无需定标的地基激光雷达气溶胶消光系数精确反演方法. 物理学报, 2019, 68(7): 074205. doi: 10.7498/aps.68.20181825
    [10] 周旭聪, 石尚, 李飞, 孟庆田, 王兵兵. 利用双色激光场下域上电离谱鉴别H32+ 两种不同分子构型. 物理学报, 2020, (): . doi: 10.7498/aps.69.20200013
    [11] 张继业, 张建伟, 曾玉刚, 张俊, 宁永强, 张星, 秦莉, 刘云, 王立军. 高功率垂直外腔面发射半导体激光器增益设计及制备. 物理学报, 2020, 69(5): 054204. doi: 10.7498/aps.69.20191787
  • 引用本文:
    Citation:
计量
  • 文章访问数:  3800
  • PDF下载量:  922
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-06-23
  • 修回日期:  2009-08-30
  • 刊出日期:  2010-06-15

真空条件下激光诱导光纤损伤特性研究

  • 1. (1)成都精密光学工程研究中心,成都 610041; (2)中国工程物理研究院电子工程研究所,绵阳 621900
    基金项目: 

    中国工程物理研究院科学技术发展基金重点项目(批准号: 2007A05001)、国防科技预研基金(批准号: 51305070402 )和中国工程物理研究院电子工程研究所科技创新基金(批准号: S20070202) 资助的课题.

摘要: 实验研究并分析了调Q Nd:YAG 脉冲激光诱导光纤损伤特性.设计了在真空条件下全石英光纤传输1064 nm 脉冲激光实验.通过将激光注入光纤端面气压降低到10—100 Pa, 光纤端面击穿阈值提高到大气环境下的185 倍.结合光纤端面损伤形貌分析可知,光纤端面损伤主要是由于激光驻波场和烧蚀共同作用的结果,光纤端面或内部大量的缺陷降低了光纤抗激光损伤的能力.在真空条件下由于光纤端面光学击穿阈值的提高,激光诱导光纤损伤特性又表现出了另外一种损伤模式——光纤初始输入段损伤.它发生在光纤输入段附

English Abstract

参考文献 (17)

目录

    /

    返回文章
    返回