搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

平面射流场中纳米颗粒的成核与凝并

张凯 刘演华 干富军

平面射流场中纳米颗粒的成核与凝并

张凯, 刘演华, 干富军
PDF
导出引用
导出核心图
  • 采用大涡模拟和直接积分矩方法,数值模拟了在Reynolds数为8300的平面射流中,水蒸气(相对湿度φ=70%)和硫酸蒸气(质量分数为5×10-6)二元体系中纳米颗粒的成核与凝并,详细分析了颗粒数密度、体积密度和平均粒径的分布.计算结果表明.射流场混合动量厚度的增长和实验结果一致;射流场的拟序结构导致了涡核中心处硫酸蒸气浓度的明显减小,而纳米颗粒数密度则明显增加;拟序结构的出现导致颗粒碰撞概率增大,提高了颗粒凝并效率;在颗粒数密度较大的涡核中心,颗粒成核作用增强,从而加
    • 基金项目: 国家自然科学基金重点项目(批准号: 10802083)资助的课题.
    [1]

    [1]Penttinen P, Timonen K L, Tiittanen P, Mirme A, Ruuskanen J, Pekkanen L 2001 Environ. Health Perspect. 109 319

    [2]

    [2]Meng L J, Zhang K W, Zhong J X 2007 Acta Phys. Sin. 56 1009  (in Chinese) [孟利军、张凯旺、钟建新 2007 物理学报 56 1009]

    [3]

    [3]Li J, Liu W L, Meng L J, Zhang K W, Zhong J X 2008 Acta Phys. Sin. 57 382 (in Chinese)[李俊、刘文亮、孟利军、张凯旺、钟建新 2008  物理学报 57 382]

    [4]

    [4]Friedlander S K 2000 Smoke, Dust, and Haze : Fundamentals of Aerosol Dynamics (Oxford: Oxford University Press )

    [5]

    [5]Talukdar S S, Swihart M T 2004 J. Aerosol Sci. 35 889

    [6]

    [6]Wang L, Marchisio1 D L, Vigil R D, Fox R O 2005 J. Colloid Interf. Sci. 282 380

    [7]

    [7]Liu S, Lin J Z 2008 J. Hydrodyn. 20 1

    [8]

    [8]Lemmetty M, Ronkko T, Virtanen A, Keskinen J, Pirjola L 2008 Aerosol Sci. Technol. 42 916

    [9]

    [9]Miller S E, Garrick S C 2004 Aerosol Sci. Technol. 38 79

    [10]

    ]Lin J Z, Chan T L, Liu S, Zhou K, Zhou Y, Lee S C 2007 Int. J. Nonlin. Sci. Num. 81 45

    [11]

    ]Yu M Z, Lin J Z, Chen L H 2007 J. Appl. Math. Mech. 28 1445

    [12]

    ]Yu M Z, Lin J Z, Chen L H 2006 Acta Mech. Sin. 22 29

    [13]

    ]Yin Z Q, Lin J Z, Zhou K, Chan T L 2007 Int. J. Nonlin. Sci. Num. 81 535

    [14]

    ]Yu M Z, Lin J Z, Xiong H B 2007 Chin. J. Chem. Eng. 15 828

    [15]

    ]Yu M Z, Lin J Z, Chan T L 2008 Powder Technol. 181 9

    [16]

    ]Yin Z Q, Lin J Z, Zhou K 2008 J. Appl. Math. Mech. 29 153

    [17]

    ]Yu M Z, Lin J Z, Chan T L 2008 Chem. Eng. Sci. 63 2317

    [18]

    ]Feng Y, Lin J Z 2008 Chin. Phys. 17 4547

    [19]

    ]Lin J Z, Shi X, Yu Z S 2003 Int. J. Multiphase Flow 29 1355

    [20]

    ]Smagorinsky J 1963 Month. Wea. Rev. 91 99

    [21]

    ]Fox R O 2003 Computational Models for Turbulent Reacting Flow (Oxford: Oxford University Press)

    [22]

    ]Marchisio D L, Fox R O 2005 J. Aerosol Sci. 36 43

    [23]

    ]Vanni M 2000 J. Colloid Interf. Sci. 221 143

    [24]

    ]Diemer R B, Olson J H 2002 Chem. Eng. Sci. 57 2211

    [25]

    ]Park S H, Lee K W, Otto E, Fissan H 1999 J. Aerosol Sci. 30 3

    [26]

    ]Otto E, Fissan H 1999 Adv. Powder Technol. 10 1

    [27]

    ]McGraw R, Nemesure S, Schwartz S E 1998 J. Aerosol Sci. 29 761

    [28]

    ]Holmes N S 2007 Atmos. Environ. 41 2183

    [29]

    ]Vehkamaki H, Kulmala M, Lehtinen K E J, Noppel M 2003 Environ. Sci. Technol. 37 3392

    [30]

    ]Upadhyay R R, Ezekoye O A 2006 J. Aerosol Sci. 37 799

    [31]

    ]Otto E, Fissan H, Park S H, Lee K W, Otto E 1999 J. Aerosol 2 Sci. 30 17

    [32]

    ]Pratsinis S E, Kim K S 1989 J. Aerosol Sci. 20 101

    [33]

    ]Le Ribault C, Sarkar S, Stanley S A 1999 Phys. Fluids 11 3069

    [34]

    ]Thomas F O, Chu H C 1989 Phys. Fluids 1 1566

    [35]

    ]Vehkamaki H, Kulmala M, Napari I, Lehtinen K E J, Timmreck C, Noppel M, Laaksonen A 2002 J. Geophys. Res. 107 4622

  • [1]

    [1]Penttinen P, Timonen K L, Tiittanen P, Mirme A, Ruuskanen J, Pekkanen L 2001 Environ. Health Perspect. 109 319

    [2]

    [2]Meng L J, Zhang K W, Zhong J X 2007 Acta Phys. Sin. 56 1009  (in Chinese) [孟利军、张凯旺、钟建新 2007 物理学报 56 1009]

    [3]

    [3]Li J, Liu W L, Meng L J, Zhang K W, Zhong J X 2008 Acta Phys. Sin. 57 382 (in Chinese)[李俊、刘文亮、孟利军、张凯旺、钟建新 2008  物理学报 57 382]

    [4]

    [4]Friedlander S K 2000 Smoke, Dust, and Haze : Fundamentals of Aerosol Dynamics (Oxford: Oxford University Press )

    [5]

    [5]Talukdar S S, Swihart M T 2004 J. Aerosol Sci. 35 889

    [6]

    [6]Wang L, Marchisio1 D L, Vigil R D, Fox R O 2005 J. Colloid Interf. Sci. 282 380

    [7]

    [7]Liu S, Lin J Z 2008 J. Hydrodyn. 20 1

    [8]

    [8]Lemmetty M, Ronkko T, Virtanen A, Keskinen J, Pirjola L 2008 Aerosol Sci. Technol. 42 916

    [9]

    [9]Miller S E, Garrick S C 2004 Aerosol Sci. Technol. 38 79

    [10]

    ]Lin J Z, Chan T L, Liu S, Zhou K, Zhou Y, Lee S C 2007 Int. J. Nonlin. Sci. Num. 81 45

    [11]

    ]Yu M Z, Lin J Z, Chen L H 2007 J. Appl. Math. Mech. 28 1445

    [12]

    ]Yu M Z, Lin J Z, Chen L H 2006 Acta Mech. Sin. 22 29

    [13]

    ]Yin Z Q, Lin J Z, Zhou K, Chan T L 2007 Int. J. Nonlin. Sci. Num. 81 535

    [14]

    ]Yu M Z, Lin J Z, Xiong H B 2007 Chin. J. Chem. Eng. 15 828

    [15]

    ]Yu M Z, Lin J Z, Chan T L 2008 Powder Technol. 181 9

    [16]

    ]Yin Z Q, Lin J Z, Zhou K 2008 J. Appl. Math. Mech. 29 153

    [17]

    ]Yu M Z, Lin J Z, Chan T L 2008 Chem. Eng. Sci. 63 2317

    [18]

    ]Feng Y, Lin J Z 2008 Chin. Phys. 17 4547

    [19]

    ]Lin J Z, Shi X, Yu Z S 2003 Int. J. Multiphase Flow 29 1355

    [20]

    ]Smagorinsky J 1963 Month. Wea. Rev. 91 99

    [21]

    ]Fox R O 2003 Computational Models for Turbulent Reacting Flow (Oxford: Oxford University Press)

    [22]

    ]Marchisio D L, Fox R O 2005 J. Aerosol Sci. 36 43

    [23]

    ]Vanni M 2000 J. Colloid Interf. Sci. 221 143

    [24]

    ]Diemer R B, Olson J H 2002 Chem. Eng. Sci. 57 2211

    [25]

    ]Park S H, Lee K W, Otto E, Fissan H 1999 J. Aerosol Sci. 30 3

    [26]

    ]Otto E, Fissan H 1999 Adv. Powder Technol. 10 1

    [27]

    ]McGraw R, Nemesure S, Schwartz S E 1998 J. Aerosol Sci. 29 761

    [28]

    ]Holmes N S 2007 Atmos. Environ. 41 2183

    [29]

    ]Vehkamaki H, Kulmala M, Lehtinen K E J, Noppel M 2003 Environ. Sci. Technol. 37 3392

    [30]

    ]Upadhyay R R, Ezekoye O A 2006 J. Aerosol Sci. 37 799

    [31]

    ]Otto E, Fissan H, Park S H, Lee K W, Otto E 1999 J. Aerosol 2 Sci. 30 17

    [32]

    ]Pratsinis S E, Kim K S 1989 J. Aerosol Sci. 20 101

    [33]

    ]Le Ribault C, Sarkar S, Stanley S A 1999 Phys. Fluids 11 3069

    [34]

    ]Thomas F O, Chu H C 1989 Phys. Fluids 1 1566

    [35]

    ]Vehkamaki H, Kulmala M, Napari I, Lehtinen K E J, Timmreck C, Noppel M, Laaksonen A 2002 J. Geophys. Res. 107 4622

  • [1] 杨建刚, 胡春波, 朱小飞, 李悦, 胡旭, 邓哲. 粉末颗粒气力加注特性实验研究. 物理学报, 2020, 69(4): 048102. doi: 10.7498/aps.69.20191273
    [2] 王琳, 魏来, 王正汹. 垂直磁重联平面的驱动流对磁岛链影响的模拟. 物理学报, 2020, 69(5): 059401. doi: 10.7498/aps.69.20191612
    [3] 罗菊, 韩敬华. 激光等离子体去除微纳颗粒的热力学研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191933
    [4] 张战刚, 雷志锋, 童腾, 李晓辉, 王松林, 梁天骄, 习凯, 彭超, 何玉娟, 黄云, 恩云飞. 14 nm FinFET和65 nm平面工艺静态随机存取存储器中子单粒子翻转对比. 物理学报, 2020, 69(5): 056101. doi: 10.7498/aps.69.20191209
    [5] 董正琼, 赵杭, 朱金龙, 石雅婷. 入射光照对典型光刻胶纳米结构的光学散射测量影响分析. 物理学报, 2020, 69(3): 030601. doi: 10.7498/aps.69.20191525
    [6] 徐贤达, 赵磊, 孙伟峰. 石墨烯纳米网电导特性的能带机理第一原理. 物理学报, 2020, 69(4): 047101. doi: 10.7498/aps.69.20190657
    [7] 李闯, 李伟伟, 蔡理, 谢丹, 刘保军, 向兰, 杨晓阔, 董丹娜, 刘嘉豪, 陈亚博. 基于银纳米线电极-rGO敏感材料的柔性NO2气体传感器. 物理学报, 2020, 69(5): 058101. doi: 10.7498/aps.69.20191390
    [8] 梁琦, 王如志, 杨孟骐, 王长昊, 刘金伟. Al2O3衬底无催化剂生长GaN纳米线及其光学性能研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191923
    [9] 张雅男, 詹楠, 邓玲玲, 陈淑芬. 利用银纳米立方增强效率的多层溶液加工白光有机发光二极管. 物理学报, 2020, 69(4): 047801. doi: 10.7498/aps.69.20191526
    [10] 卢超, 陈伟, 罗尹虹, 丁李利, 王勋, 赵雯, 郭晓强, 李赛. 纳米体硅鳍形场效应晶体管单粒子瞬态中的源漏导通现象研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191896
  • 引用本文:
    Citation:
计量
  • 文章访问数:  3170
  • PDF下载量:  656
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-07-28
  • 修回日期:  2009-11-06
  • 刊出日期:  2010-06-15

平面射流场中纳米颗粒的成核与凝并

  • 1. (1)澳大利亚皇家墨尔本理工大学航空学院,墨尔本 3083; (2)浙江大学力学系,杭州 310027
    基金项目: 

    国家自然科学基金重点项目(批准号: 10802083)资助的课题.

摘要: 采用大涡模拟和直接积分矩方法,数值模拟了在Reynolds数为8300的平面射流中,水蒸气(相对湿度φ=70%)和硫酸蒸气(质量分数为5×10-6)二元体系中纳米颗粒的成核与凝并,详细分析了颗粒数密度、体积密度和平均粒径的分布.计算结果表明.射流场混合动量厚度的增长和实验结果一致;射流场的拟序结构导致了涡核中心处硫酸蒸气浓度的明显减小,而纳米颗粒数密度则明显增加;拟序结构的出现导致颗粒碰撞概率增大,提高了颗粒凝并效率;在颗粒数密度较大的涡核中心,颗粒成核作用增强,从而加

English Abstract

参考文献 (35)

目录

    /

    返回文章
    返回