搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

平面射流场中纳米颗粒的成核与凝并

刘演华 干富军 张凯

引用本文:
Citation:

平面射流场中纳米颗粒的成核与凝并

刘演华, 干富军, 张凯

Nucleation and coagulation of nanoparticles in a planar jet

Liu Yan-Hua, Gan Fu-Jun, Zhang Kai
PDF
导出引用
  • 采用大涡模拟和直接积分矩方法,数值模拟了在Reynolds数为8300的平面射流中,水蒸气(相对湿度φ=70%)和硫酸蒸气(质量分数为5×10-6)二元体系中纳米颗粒的成核与凝并,详细分析了颗粒数密度、体积密度和平均粒径的分布.计算结果表明.射流场混合动量厚度的增长和实验结果一致;射流场的拟序结构导致了涡核中心处硫酸蒸气浓度的明显减小,而纳米颗粒数密度则明显增加;拟序结构的出现导致颗粒碰撞概率增大,提高了颗粒凝并效率;在颗粒数密度较大的涡核中心,颗粒成核作用增强,从而加
    The nucleation and coagulation of nanoparticles in the binary system of water vapor (relative humidity 70%) and sulfuric acid vapor (5×10-6) were detailedly studied by performing numerical simulation in a planar jet (Re=8300). The large eddy simulation was utilized to calculate the flow field, and the particle field is obtained by using the direct quadrature method of moment to solve the particle general dynamic equation. The distributions of particle number concentration, volume concentration and average diameter were discussed. The result shows that the growth of the calculated momentum thickness is consistent with the previous experimental data. The interface of the jet will roll up and generate the coherent vortices which will lead to an obvious decrease of the specie concentration of sulfuric acid vapor and increase of number concentration of nanoparticles in the vortex core. The appearance of the coherent vortices increases the possibility of particle collision and enhances the particle coagulation. The nanoparticle nucleation is enhanced in the vortex core where high particle number concentration will accelerate the particle coagulation.
    • 基金项目: 国家自然科学基金重点项目(批准号: 10802083)资助的课题.
    [1]

    [1]Penttinen P, Timonen K L, Tiittanen P, Mirme A, Ruuskanen J, Pekkanen L 2001 Environ. Health Perspect. 109 319

    [2]

    [2]Meng L J, Zhang K W, Zhong J X 2007 Acta Phys. Sin. 56 1009  (in Chinese) [孟利军、张凯旺、钟建新 2007 物理学报 56 1009]

    [3]

    [3]Li J, Liu W L, Meng L J, Zhang K W, Zhong J X 2008 Acta Phys. Sin. 57 382 (in Chinese)[李俊、刘文亮、孟利军、张凯旺、钟建新 2008  物理学报 57 382]

    [4]

    [4]Friedlander S K 2000 Smoke, Dust, and Haze : Fundamentals of Aerosol Dynamics (Oxford: Oxford University Press )

    [5]

    [5]Talukdar S S, Swihart M T 2004 J. Aerosol Sci. 35 889

    [6]

    [6]Wang L, Marchisio1 D L, Vigil R D, Fox R O 2005 J. Colloid Interf. Sci. 282 380

    [7]

    [7]Liu S, Lin J Z 2008 J. Hydrodyn. 20 1

    [8]

    [8]Lemmetty M, Ronkko T, Virtanen A, Keskinen J, Pirjola L 2008 Aerosol Sci. Technol. 42 916

    [9]

    [9]Miller S E, Garrick S C 2004 Aerosol Sci. Technol. 38 79

    [10]

    ]Lin J Z, Chan T L, Liu S, Zhou K, Zhou Y, Lee S C 2007 Int. J. Nonlin. Sci. Num. 81 45

    [11]

    ]Yu M Z, Lin J Z, Chen L H 2007 J. Appl. Math. Mech. 28 1445

    [12]

    ]Yu M Z, Lin J Z, Chen L H 2006 Acta Mech. Sin. 22 29

    [13]

    ]Yin Z Q, Lin J Z, Zhou K, Chan T L 2007 Int. J. Nonlin. Sci. Num. 81 535

    [14]

    ]Yu M Z, Lin J Z, Xiong H B 2007 Chin. J. Chem. Eng. 15 828

    [15]

    ]Yu M Z, Lin J Z, Chan T L 2008 Powder Technol. 181 9

    [16]

    ]Yin Z Q, Lin J Z, Zhou K 2008 J. Appl. Math. Mech. 29 153

    [17]

    ]Yu M Z, Lin J Z, Chan T L 2008 Chem. Eng. Sci. 63 2317

    [18]

    ]Feng Y, Lin J Z 2008 Chin. Phys. 17 4547

    [19]

    ]Lin J Z, Shi X, Yu Z S 2003 Int. J. Multiphase Flow 29 1355

    [20]

    ]Smagorinsky J 1963 Month. Wea. Rev. 91 99

    [21]

    ]Fox R O 2003 Computational Models for Turbulent Reacting Flow (Oxford: Oxford University Press)

    [22]

    ]Marchisio D L, Fox R O 2005 J. Aerosol Sci. 36 43

    [23]

    ]Vanni M 2000 J. Colloid Interf. Sci. 221 143

    [24]

    ]Diemer R B, Olson J H 2002 Chem. Eng. Sci. 57 2211

    [25]

    ]Park S H, Lee K W, Otto E, Fissan H 1999 J. Aerosol Sci. 30 3

    [26]

    ]Otto E, Fissan H 1999 Adv. Powder Technol. 10 1

    [27]

    ]McGraw R, Nemesure S, Schwartz S E 1998 J. Aerosol Sci. 29 761

    [28]

    ]Holmes N S 2007 Atmos. Environ. 41 2183

    [29]

    ]Vehkamaki H, Kulmala M, Lehtinen K E J, Noppel M 2003 Environ. Sci. Technol. 37 3392

    [30]

    ]Upadhyay R R, Ezekoye O A 2006 J. Aerosol Sci. 37 799

    [31]

    ]Otto E, Fissan H, Park S H, Lee K W, Otto E 1999 J. Aerosol 2 Sci. 30 17

    [32]

    ]Pratsinis S E, Kim K S 1989 J. Aerosol Sci. 20 101

    [33]

    ]Le Ribault C, Sarkar S, Stanley S A 1999 Phys. Fluids 11 3069

    [34]

    ]Thomas F O, Chu H C 1989 Phys. Fluids 1 1566

    [35]

    ]Vehkamaki H, Kulmala M, Napari I, Lehtinen K E J, Timmreck C, Noppel M, Laaksonen A 2002 J. Geophys. Res. 107 4622

  • [1]

    [1]Penttinen P, Timonen K L, Tiittanen P, Mirme A, Ruuskanen J, Pekkanen L 2001 Environ. Health Perspect. 109 319

    [2]

    [2]Meng L J, Zhang K W, Zhong J X 2007 Acta Phys. Sin. 56 1009  (in Chinese) [孟利军、张凯旺、钟建新 2007 物理学报 56 1009]

    [3]

    [3]Li J, Liu W L, Meng L J, Zhang K W, Zhong J X 2008 Acta Phys. Sin. 57 382 (in Chinese)[李俊、刘文亮、孟利军、张凯旺、钟建新 2008  物理学报 57 382]

    [4]

    [4]Friedlander S K 2000 Smoke, Dust, and Haze : Fundamentals of Aerosol Dynamics (Oxford: Oxford University Press )

    [5]

    [5]Talukdar S S, Swihart M T 2004 J. Aerosol Sci. 35 889

    [6]

    [6]Wang L, Marchisio1 D L, Vigil R D, Fox R O 2005 J. Colloid Interf. Sci. 282 380

    [7]

    [7]Liu S, Lin J Z 2008 J. Hydrodyn. 20 1

    [8]

    [8]Lemmetty M, Ronkko T, Virtanen A, Keskinen J, Pirjola L 2008 Aerosol Sci. Technol. 42 916

    [9]

    [9]Miller S E, Garrick S C 2004 Aerosol Sci. Technol. 38 79

    [10]

    ]Lin J Z, Chan T L, Liu S, Zhou K, Zhou Y, Lee S C 2007 Int. J. Nonlin. Sci. Num. 81 45

    [11]

    ]Yu M Z, Lin J Z, Chen L H 2007 J. Appl. Math. Mech. 28 1445

    [12]

    ]Yu M Z, Lin J Z, Chen L H 2006 Acta Mech. Sin. 22 29

    [13]

    ]Yin Z Q, Lin J Z, Zhou K, Chan T L 2007 Int. J. Nonlin. Sci. Num. 81 535

    [14]

    ]Yu M Z, Lin J Z, Xiong H B 2007 Chin. J. Chem. Eng. 15 828

    [15]

    ]Yu M Z, Lin J Z, Chan T L 2008 Powder Technol. 181 9

    [16]

    ]Yin Z Q, Lin J Z, Zhou K 2008 J. Appl. Math. Mech. 29 153

    [17]

    ]Yu M Z, Lin J Z, Chan T L 2008 Chem. Eng. Sci. 63 2317

    [18]

    ]Feng Y, Lin J Z 2008 Chin. Phys. 17 4547

    [19]

    ]Lin J Z, Shi X, Yu Z S 2003 Int. J. Multiphase Flow 29 1355

    [20]

    ]Smagorinsky J 1963 Month. Wea. Rev. 91 99

    [21]

    ]Fox R O 2003 Computational Models for Turbulent Reacting Flow (Oxford: Oxford University Press)

    [22]

    ]Marchisio D L, Fox R O 2005 J. Aerosol Sci. 36 43

    [23]

    ]Vanni M 2000 J. Colloid Interf. Sci. 221 143

    [24]

    ]Diemer R B, Olson J H 2002 Chem. Eng. Sci. 57 2211

    [25]

    ]Park S H, Lee K W, Otto E, Fissan H 1999 J. Aerosol Sci. 30 3

    [26]

    ]Otto E, Fissan H 1999 Adv. Powder Technol. 10 1

    [27]

    ]McGraw R, Nemesure S, Schwartz S E 1998 J. Aerosol Sci. 29 761

    [28]

    ]Holmes N S 2007 Atmos. Environ. 41 2183

    [29]

    ]Vehkamaki H, Kulmala M, Lehtinen K E J, Noppel M 2003 Environ. Sci. Technol. 37 3392

    [30]

    ]Upadhyay R R, Ezekoye O A 2006 J. Aerosol Sci. 37 799

    [31]

    ]Otto E, Fissan H, Park S H, Lee K W, Otto E 1999 J. Aerosol 2 Sci. 30 17

    [32]

    ]Pratsinis S E, Kim K S 1989 J. Aerosol Sci. 20 101

    [33]

    ]Le Ribault C, Sarkar S, Stanley S A 1999 Phys. Fluids 11 3069

    [34]

    ]Thomas F O, Chu H C 1989 Phys. Fluids 1 1566

    [35]

    ]Vehkamaki H, Kulmala M, Napari I, Lehtinen K E J, Timmreck C, Noppel M, Laaksonen A 2002 J. Geophys. Res. 107 4622

  • [1] 刘旺旺, 张克学, 王军, 夏国栋. 过渡区内纳米颗粒的曳力特性模拟研究. 物理学报, 2024, 73(7): 075101. doi: 10.7498/aps.73.20231861
    [2] 马奥杰, 陈颂佳, 李玉秀, 陈颖. 纳米颗粒布朗扩散边界条件的分子动力学模拟. 物理学报, 2021, 70(14): 148201. doi: 10.7498/aps.70.20202240
    [3] 崔杰, 苏俊杰, 王军, 夏国栋, 李志刚. 自由分子区内纳米颗粒的热泳力计算. 物理学报, 2021, 70(5): 055101. doi: 10.7498/aps.70.20201629
    [4] 张旋, 张天赐, 葛际江, 蒋平, 张贵才. 表面活性剂对气-液界面纳米颗粒吸附规律的影响. 物理学报, 2020, 69(2): 026801. doi: 10.7498/aps.69.20190756
    [5] 黄丛亮, 冯妍卉, 张欣欣, 李静, 王戈, 侴爱辉. 金属纳米颗粒的热导率. 物理学报, 2013, 62(2): 026501. doi: 10.7498/aps.62.026501
    [6] 臧渡洋, 张永建. 水/空气界面纳米颗粒单层膜流变特性的锥体压入法研究. 物理学报, 2012, 61(2): 026803. doi: 10.7498/aps.61.026803
    [7] 魏杰, 陈彦均, 徐卓. 多铁性BiFeO3纳米颗粒的尺寸依赖磁性能研究. 物理学报, 2012, 61(5): 057502. doi: 10.7498/aps.61.057502
    [8] 王新亮, 狄勤丰, 张任良, 丁伟朋, 龚玮, 程毅翀. 纳米颗粒吸附岩心表面的强疏水特征. 物理学报, 2012, 61(21): 216801. doi: 10.7498/aps.61.216801
    [9] 臧渡洋, 张永建, Langevin Dominique. SiO2纳米颗粒单层膜流变特性的双Wilhelmy片法研究. 物理学报, 2011, 60(7): 076801. doi: 10.7498/aps.60.076801
    [10] 陈慧敏, 刘恩隆. 纳米颗粒与纳米块材摩尔定压热容的理论计算. 物理学报, 2011, 60(6): 066501. doi: 10.7498/aps.60.066501
    [11] 邓泽超, 罗青山, 丁学成, 褚立志, 梁伟华, 陈金忠, 傅广生, 王英龙. 脉冲激光烧蚀制备纳米Si晶粒成核气压阈值及动力学研究. 物理学报, 2011, 60(12): 126801. doi: 10.7498/aps.60.126801
    [12] 米建春, 冯宝平. 平面射流沿轴线的特征尺度及其对测量信号过滤程度的依赖. 物理学报, 2010, 59(7): 4748-4755. doi: 10.7498/aps.59.4748
    [13] 徐忠锋, 刘丽莉, 赵永涛, 陈亮, 朱键, 王瑜玉, 肖国青. 不同能量的高电荷态Ar12+离子辐照对Au纳米颗粒尺寸的影响. 物理学报, 2009, 58(6): 3833-3838. doi: 10.7498/aps.58.3833
    [14] 米建春, 冯宝平, Deo Ravinesh C, Nathan Graham J. 出口雷诺数对平面射流自保持性的影响. 物理学报, 2009, 58(11): 7756-7764. doi: 10.7498/aps.58.7756
    [15] 李 晖, 谢二庆, 张洪亮, 潘孝军, 张永哲. 火焰喷雾法合成ZnO和MgxZn1-xO纳米颗粒的光学性能研究. 物理学报, 2007, 56(6): 3584-3588. doi: 10.7498/aps.56.3584
    [16] 刘锦宏, 张凌飞, 田庚方, 李济晨, 李发伸. 低温固相反应法制备的NiFe2O4纳米颗粒的结构与磁性. 物理学报, 2007, 56(10): 6050-6055. doi: 10.7498/aps.56.6050
    [17] 孟利军, 张凯旺, 钟建新. 硅纳米颗粒在碳纳米管表面生长的分子动力学模拟. 物理学报, 2007, 56(2): 1009-1013. doi: 10.7498/aps.56.1009
    [18] 臧竞存, 田战魁, 刘燕行, 迟 静, 邹玉林, 魏建忠, 叶建萍. 溶胶-凝胶法制备ZnO薄膜的成核-生长和失稳分解研究. 物理学报, 2006, 55(3): 1358-1362. doi: 10.7498/aps.55.1358
    [19] 疏学明, 方 俊, 申世飞, 刘勇进, 袁宏永, 范维澄. 火灾烟雾颗粒凝并分形特性研究. 物理学报, 2006, 55(9): 4466-4471. doi: 10.7498/aps.55.4466
    [20] 王晓平, 谢 峰, 石勤伟, 赵特秀. 晶格失配对异质外延超薄膜生长中成核特性的影响. 物理学报, 2004, 53(8): 2699-2704. doi: 10.7498/aps.53.2699
计量
  • 文章访问数:  7106
  • PDF下载量:  671
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-07-28
  • 修回日期:  2009-11-06
  • 刊出日期:  2010-03-05

/

返回文章
返回