搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

任意椭圆偏振激光场非线性汤姆逊散射的一般表述与X射线产生的优化条件

赵诗华 吕清正 袁素英 李英骏

任意椭圆偏振激光场非线性汤姆逊散射的一般表述与X射线产生的优化条件

赵诗华, 吕清正, 袁素英, 李英骏
PDF
导出引用
导出核心图
  • 基于相对论条件的电动力学,解析求解了任意椭圆偏振条件下激光场的非线性汤姆逊散射的一般表示.利用解析结果得到了背向非线性汤姆逊散射高次谐波的极值条件.结果表明对于基频背向汤姆逊散射,在相同条件下,圆偏振激光具有最大值而线偏振是最小值,如果激光偏振态从圆偏振连续的过渡到线偏振,背向汤姆逊散射的角功率随之单调递减.这一效应对高强度入射激光尤为重要,当 a2 >5时,圆偏振情形的贡献几乎是线偏振的2倍.这对基于汤姆逊散射机制的X射线源实验研究具有重要参考意义.
    • 基金项目: 国家重点基础研究发展计划(973) 项目(批准号:2007CB815105) ,国家自然科学基金(批准号:10874242) 和中央高校基本科研业务费资助的课题.
    [1]

    prangle P, Ting A, Esarey E, Fisher A 1992 J. Appl. Phys. 72 5032

    [2]

    Spranglet P, Esarey E 1992 Phys. Fluids B 4 2241

    [3]

    Esarey E, Ride S K, Sprangle P 1993 Phys. Rev. E 48 3003

    [4]

    Fiocco G, Thompson E 1963 Phys. Rev. Lett. 10 89

    [5]

    Milburn R H 1963 Phys. Rev. Lett. 10 75

    [6]

    Bemporad C, Milburn R H, Tanaka N, Fotino M 1965 Phys. Rev. 138 B1546

    [7]

    Strickland D, Mourou G 1985 Opt. Commun. 56 219

    [8]

    Kim K J, Chattopadhyay S, Shank C V 1994 Nucl. Instrum. Methods Phys. Res., Sect. A 341 351

    [9]

    Schoenlein R W, Leemans W P, Chin A H, Volfbeyn P, Glover T E, Balling P, Zolotorev M, Kim K J, Chattopadhyay S, Shank C V 1996 Science 274 236

    [10]

    Kashiwagi S, Washio M, Kobuki T, Kuroda R, Ben-Zvi I, Pogorelsky I, Kusche K, Skaritka J, Yakimenko V, Wang X J, Hirose T, Dobashi K, Muto T, Urakawa J, Omori T, Okugi T, Tsunemi A, Liu Y, He P, Cline D, Segalov Z 2000 Nucl. Instrum. Methods Phys. Res., Sect. A 455 36

    [11]

    Kotaki H, Kando M, Dewa H, Kondo S, Watanabe T, Ueda T, Kinoshita K, Yoshii K, Uesaka M, Nakajima K 2000 Nucl. Instrum. Methods Phys. Res., Sect. A 455 166

    [12]

    Pogorelsky I V, Ben-Zvi I, Hirose T, Kashiwagi S, Yakimenko V, Kusche K, Siddons P, Skaritka J, Kumita T, Tsunemi A, Omori T, Urakawa J, Washio M, Yokoya K, Okugi T, Liu Y, He P, Cline D 2000 Phys. Rev. ST Accel. Beams 3 090702

    [13]

    Uesaka M, Kotaki H, Nakajima K, Harano H, Kinoshita K, Watanabe T, Ueda T, Yoshii K, Kando M, Dewa H, Kondo S, Sakai F 2000 Nucl. Instrum. Methods Phys. Res., A 455 90

    [14]

    Catravas P, Esarey E, Leemans W P 2001 Meas. Sci. Technol. 12 1828

    [15]

    Hartemann F V, Baldis H A, Kerman A K, Foll A L, Luhmann J, Rupp B 2001 Phys. Rev. E 64 016501

    [16]

    Chouffani K, Wells D, Harmon F, Jones J, Lancaster G 2002 Nucl. Instrum. Methods Phys. Res. A 495 95

    [17]

    Sakai I, Aoki T, Dobashi K, Fukuda M, Higurashi A, Hirose T, Iimura T, Kurihara Y, Okugi T, Omori T, Urakawa J, Washio M, Yokoya K 2003 Phys. Rev. ST Accel. Beams 6 091001

    [18]

    Brown W J, Anderson S G, Barty C P J, Betts S M, Booth R, Crane J K, Cross R R, Fittinghoff D N, Gibson D J, Hartemann F V, Hartouni E P, Kuba J, Sage G P L, Slaughter D R, Tremaine A M, J.Wootton A, Springer P T 2004 Phys. Rev. ST Accel. Beams 7 060702

    [19]

    Schwoerer H, Liesfeld B, Schlenvoigt H P, Amthor K U, Sauerbrey R 2006 Phys. Rev. Lett. 96 014802

    [20]

    Babzien M, Ben-Zvi I, Kusche K, Pavlishin I V, Pogorelsky I V, Siddons D P, Yakimenko V, Cline D, Zhou F, Hirose T, Kamiya Y, Kumita T, Omori T, Urakawa J, Yokoya K 2006 Phys. Rev. Lett. 96 054802

    [21]

    Yakimenko V, Pogorelsky I V 2006 Phys. Rev. ST Accel. Beams 9 091001

    [22]

    Priebe G, Laundy D, Macdonald M A, Diakun G P, Jamison S P, Jones L B, Holder D J, Smith S L, Phillips P J, Fell B D, Sheehy B, Naumova N, Sokolov I V, Ter-Avetisyan S, Spohr K, Krafft G A, Rosenzweig J B, Schramm U, Grüner F, Hirst G J, Collier J, Chattopadhyay S, Seddon E A 2008 Laser Part. Beams 26 649

    [23]

    Tang C, Huang W, Li R, Du Y, Yan L, JiaruShi, Du Q, Yu P, Chen H, Du T, Cheng C, Lin Y 2009 Nucl. Instrum. Methods Phys. Res. A 608 s70

    [24]

    Albert F, Anderson S G, Gibson D J, Hagmann C A, Johnson M S, Messerly M, Semenov V, Shverdin M Y, Rusnak B, Tremaine A M, Hartemann F V, Siders C W, McNabb D P, Barty C P J 2010 Phys. Rev. ST Accel. Beams 13 070704

    [25]

    Gibson D J, Albert F, Anderson S G, Betts S M, Messerly M J, Phan H H, Semenov V A, Shverdin M Y, Tremaine A M, Hartemann F V, Siders C W, McNabb D P, Barty C P J 2010 Phys. Rev. ST Accel. Beams 13 070703

    [26]

    Sarachik E S, Schappert G T 1970 Phys. Rev. D 1 2738

    [27]

    Watson G N 1965 A Treatise on the Theory of Bessel Functions (Cambridge: Cambridge University Press) p14—667

    [28]

    Dattoli G, Giannessi L, Mezi L, Torre A 1990 Nuovo Cimento 105B 327

  • [1]

    prangle P, Ting A, Esarey E, Fisher A 1992 J. Appl. Phys. 72 5032

    [2]

    Spranglet P, Esarey E 1992 Phys. Fluids B 4 2241

    [3]

    Esarey E, Ride S K, Sprangle P 1993 Phys. Rev. E 48 3003

    [4]

    Fiocco G, Thompson E 1963 Phys. Rev. Lett. 10 89

    [5]

    Milburn R H 1963 Phys. Rev. Lett. 10 75

    [6]

    Bemporad C, Milburn R H, Tanaka N, Fotino M 1965 Phys. Rev. 138 B1546

    [7]

    Strickland D, Mourou G 1985 Opt. Commun. 56 219

    [8]

    Kim K J, Chattopadhyay S, Shank C V 1994 Nucl. Instrum. Methods Phys. Res., Sect. A 341 351

    [9]

    Schoenlein R W, Leemans W P, Chin A H, Volfbeyn P, Glover T E, Balling P, Zolotorev M, Kim K J, Chattopadhyay S, Shank C V 1996 Science 274 236

    [10]

    Kashiwagi S, Washio M, Kobuki T, Kuroda R, Ben-Zvi I, Pogorelsky I, Kusche K, Skaritka J, Yakimenko V, Wang X J, Hirose T, Dobashi K, Muto T, Urakawa J, Omori T, Okugi T, Tsunemi A, Liu Y, He P, Cline D, Segalov Z 2000 Nucl. Instrum. Methods Phys. Res., Sect. A 455 36

    [11]

    Kotaki H, Kando M, Dewa H, Kondo S, Watanabe T, Ueda T, Kinoshita K, Yoshii K, Uesaka M, Nakajima K 2000 Nucl. Instrum. Methods Phys. Res., Sect. A 455 166

    [12]

    Pogorelsky I V, Ben-Zvi I, Hirose T, Kashiwagi S, Yakimenko V, Kusche K, Siddons P, Skaritka J, Kumita T, Tsunemi A, Omori T, Urakawa J, Washio M, Yokoya K, Okugi T, Liu Y, He P, Cline D 2000 Phys. Rev. ST Accel. Beams 3 090702

    [13]

    Uesaka M, Kotaki H, Nakajima K, Harano H, Kinoshita K, Watanabe T, Ueda T, Yoshii K, Kando M, Dewa H, Kondo S, Sakai F 2000 Nucl. Instrum. Methods Phys. Res., A 455 90

    [14]

    Catravas P, Esarey E, Leemans W P 2001 Meas. Sci. Technol. 12 1828

    [15]

    Hartemann F V, Baldis H A, Kerman A K, Foll A L, Luhmann J, Rupp B 2001 Phys. Rev. E 64 016501

    [16]

    Chouffani K, Wells D, Harmon F, Jones J, Lancaster G 2002 Nucl. Instrum. Methods Phys. Res. A 495 95

    [17]

    Sakai I, Aoki T, Dobashi K, Fukuda M, Higurashi A, Hirose T, Iimura T, Kurihara Y, Okugi T, Omori T, Urakawa J, Washio M, Yokoya K 2003 Phys. Rev. ST Accel. Beams 6 091001

    [18]

    Brown W J, Anderson S G, Barty C P J, Betts S M, Booth R, Crane J K, Cross R R, Fittinghoff D N, Gibson D J, Hartemann F V, Hartouni E P, Kuba J, Sage G P L, Slaughter D R, Tremaine A M, J.Wootton A, Springer P T 2004 Phys. Rev. ST Accel. Beams 7 060702

    [19]

    Schwoerer H, Liesfeld B, Schlenvoigt H P, Amthor K U, Sauerbrey R 2006 Phys. Rev. Lett. 96 014802

    [20]

    Babzien M, Ben-Zvi I, Kusche K, Pavlishin I V, Pogorelsky I V, Siddons D P, Yakimenko V, Cline D, Zhou F, Hirose T, Kamiya Y, Kumita T, Omori T, Urakawa J, Yokoya K 2006 Phys. Rev. Lett. 96 054802

    [21]

    Yakimenko V, Pogorelsky I V 2006 Phys. Rev. ST Accel. Beams 9 091001

    [22]

    Priebe G, Laundy D, Macdonald M A, Diakun G P, Jamison S P, Jones L B, Holder D J, Smith S L, Phillips P J, Fell B D, Sheehy B, Naumova N, Sokolov I V, Ter-Avetisyan S, Spohr K, Krafft G A, Rosenzweig J B, Schramm U, Grüner F, Hirst G J, Collier J, Chattopadhyay S, Seddon E A 2008 Laser Part. Beams 26 649

    [23]

    Tang C, Huang W, Li R, Du Y, Yan L, JiaruShi, Du Q, Yu P, Chen H, Du T, Cheng C, Lin Y 2009 Nucl. Instrum. Methods Phys. Res. A 608 s70

    [24]

    Albert F, Anderson S G, Gibson D J, Hagmann C A, Johnson M S, Messerly M, Semenov V, Shverdin M Y, Rusnak B, Tremaine A M, Hartemann F V, Siders C W, McNabb D P, Barty C P J 2010 Phys. Rev. ST Accel. Beams 13 070704

    [25]

    Gibson D J, Albert F, Anderson S G, Betts S M, Messerly M J, Phan H H, Semenov V A, Shverdin M Y, Tremaine A M, Hartemann F V, Siders C W, McNabb D P, Barty C P J 2010 Phys. Rev. ST Accel. Beams 13 070703

    [26]

    Sarachik E S, Schappert G T 1970 Phys. Rev. D 1 2738

    [27]

    Watson G N 1965 A Treatise on the Theory of Bessel Functions (Cambridge: Cambridge University Press) p14—667

    [28]

    Dattoli G, Giannessi L, Mezi L, Torre A 1990 Nuovo Cimento 105B 327

  • [1] 周慧君, 程木田, 刘绍鼎, 王取泉, 詹明生, 薛其坤. 各向异性量子点单光子发射的高偏振度特性. 物理学报, 2005, 54(9): 4141-4145. doi: 10.7498/aps.54.4141
    [2] 刘 云, 张 雄, 郑永刚, 王孝民, 鲍玉英. Blazar天体的光变和偏振. 物理学报, 2007, 56(9): 5558-5563. doi: 10.7498/aps.56.5558
    [3] 孙尧, 张淳民, 杜娟, 赵葆常. 一种基于新型偏振干涉成像光谱仪的目标偏振信息探测新方法. 物理学报, 2010, 59(6): 3863-3870. doi: 10.7498/aps.59.3863
    [4] 王目光, 李唐军, 简水生, 崔 杰, 刁 操, 娄采云, 霍 力, 姚和军, 曾 丽. 4×10Gb/s OTDM系统中偏振模色散自适应补偿的研究. 物理学报, 2005, 54(6): 2774-2778. doi: 10.7498/aps.54.2774
    [5] 陈微, 邢名欣, 任刚, 王科, 杜晓宇, 张冶金, 郑婉华. 光子晶体微腔中高偏振单偶极模的研究. 物理学报, 2009, 58(6): 3955-3960. doi: 10.7498/aps.58.3955
    [6] 柯熙政, 王姣. 大气湍流中部分相干光束上行和下行传输偏振特性的比较. 物理学报, 2015, 64(22): 224204. doi: 10.7498/aps.64.224204
    [7] 杨爱林, 林强. 部分相干Airy光束在湍流大气中传输时的偏振特性. 物理学报, 2014, 63(20): 204101. doi: 10.7498/aps.63.204101
    [8] 戴存礼, 赵艳艳, 吴威, 曾伦武. 移动Ad Hoc网络动力学同步能力的研究. 物理学报, 2010, 59(11): 7719-7723. doi: 10.7498/aps.59.7719
    [9] 王琛, 安红海, 乔秀梅, 方智恒, 熊俊, 王伟, 孙今人, 郑无敌. 软X射线激光汤姆逊散射实验尝试. 物理学报, 2013, 62(13): 135203. doi: 10.7498/aps.62.135203
    [10] 王目光, 李唐军, 简水生. 光纤偏振模色散对信号偏振度的影响. 物理学报, 2003, 52(11): 2818-2824. doi: 10.7498/aps.52.2818
    [11] 吴华生, 劳浦东, 邬建根, 屈逢源. 喇曼散射光极值法定金刚石结构薄层的晶向. 物理学报, 1989, 38(1): 111-117. doi: 10.7498/aps.38.111
    [12] 胡淑琴, 连钟祥. CT-6B托卡马克的红宝石激光90°汤姆逊散射实验. 物理学报, 1985, 34(5): 594-602. doi: 10.7498/aps.34.594
    [13] 赖天树, 刘鲁宁, 雷 亮, 寿 倩, 李熙莹, 王嘉辉, 林位株. 电子自旋偏振度及其弛豫过程的飞秒激光吸收光谱研究. 物理学报, 2005, 54(2): 967-971. doi: 10.7498/aps.54.967
    [14] 郑 君, 盛政明, 张 杰, 魏志义, 余 玮. 影响单电子非线性汤姆孙散射因素的研究. 物理学报, 2005, 54(3): 1018-1035. doi: 10.7498/aps.54.1018
    [15] 杜宜瑾, 陈立溁, 严祖同. 关于二维二元替换式系统相图的极值等浓度点的几点讨论. 物理学报, 1984, 33(6): 867-873. doi: 10.7498/aps.33.867
    [16] 王文睿, 于晋龙, 韩丙辰, 郭精忠, 罗俊, 王菊, 刘毅, 杨恩泽. 基于高非线性光纤中非线性偏振旋转效应的全光逻辑门研究. 物理学报, 2012, 61(8): 084214. doi: 10.7498/aps.61.084214
    [17] 左林, 杨爱英, 周大伟, 孙雨南. 非线性偏振旋转中偏振控制器方位角的研究. 物理学报, 2012, 61(5): 054211. doi: 10.7498/aps.61.054211
    [18] 戎海武, 王向东, 徐伟, 方同. 窄带随机噪声作用下单自由度非线性干摩擦系统的响应. 物理学报, 2009, 58(11): 7558-7564. doi: 10.7498/aps.58.7558
    [19] 邓一鑫, 涂成厚, 吕福云. 非线性偏振旋转锁模自相似脉冲光纤激光器的研究. 物理学报, 2009, 58(5): 3173-3178. doi: 10.7498/aps.58.3173
    [20] 邱昆, 武保剑, 文峰. 磁光光纤Bragg光栅中圆偏振光的非线性传输特性. 物理学报, 2009, 58(3): 1726-1730. doi: 10.7498/aps.58.1726
  • 引用本文:
    Citation:
计量
  • 文章访问数:  3169
  • PDF下载量:  719
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-11-01
  • 修回日期:  2010-12-28
  • 刊出日期:  2011-05-15

任意椭圆偏振激光场非线性汤姆逊散射的一般表述与X射线产生的优化条件

  • 1. 中国矿业大学(北京)理学院,北京 100083
    基金项目: 

    国家重点基础研究发展计划(973) 项目(批准号:2007CB815105) ,国家自然科学基金(批准号:10874242) 和中央高校基本科研业务费资助的课题.

摘要: 基于相对论条件的电动力学,解析求解了任意椭圆偏振条件下激光场的非线性汤姆逊散射的一般表示.利用解析结果得到了背向非线性汤姆逊散射高次谐波的极值条件.结果表明对于基频背向汤姆逊散射,在相同条件下,圆偏振激光具有最大值而线偏振是最小值,如果激光偏振态从圆偏振连续的过渡到线偏振,背向汤姆逊散射的角功率随之单调递减.这一效应对高强度入射激光尤为重要,当 a2 >5时,圆偏振情形的贡献几乎是线偏振的2倍.这对基于汤姆逊散射机制的X射线源实验研究具有重要参考意义.

English Abstract

参考文献 (28)

目录

    /

    返回文章
    返回