搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

BC5力学性质的第一性原理计算

李德华 苏文晋 朱晓玲

BC5力学性质的第一性原理计算

李德华, 苏文晋, 朱晓玲
PDF
导出引用
导出核心图
  • 采用平面波赝势密度泛函理论方法对060 GPa静水压下BC5 六角晶系P3m1和四方晶系I4m2结构的平衡态晶格常数、弹性常数、各向异性以及泊松比与Cauchy扰动进行了研究. 研究结果表明, BC5的两种结构在高压下是稳定的, 且不可压缩性随着压强的增加而增大. 另外, 对其电子结构也进行了计算, 计算结果表明, BC5存在一个较宽的带隙, 两种原子间有较强的共价杂化, 材料的性质主要由B的2p1和C的2p2态电子共同决定. 压强对材料带隙和费米能级附近的态密度几乎没有影响, 只引起微小的漂移, 可推断其很好的高压稳定性.
    • 基金项目: 国家自然科学基金 (批准号: 10974139, 41171175)资助的课题.
    [1]

    Cohen M L 1985 Phys. Rev. B 32 7988

    [2]

    Liu Y L, Kong F J, Yang B W, Jiang G 2007 Atca Phys. Sin. 56 5413 (in Chinese) [刘以良, 孔凡杰, 杨缤维, 蒋刚 2007 物理学报 56 5413]

    [3]

    Liu Y Y, Bauer-Grosse E, Zhang Q Y 2007 Atca Phys. Sin. 56 6572(in Chinese)[刘燕燕, E. Bauer-Grosse, 张庆瑜 2007 物理学报 56 6572]

    [4]

    Novikov N V 2005 J. Mater. Proc. Tech. 161 169

    [5]

    Chung H Y, Weinberger M B, Levine J B 2007 Science 316 436

    [6]

    Kaner R B, Gilman J J, Tolbert S H 2005 Science 308 1268

    [7]

    Knittle E, Kaner R B, Jeanloz R, Cohen M L 1995 Phys. Rev. B 51 12149

    [8]

    Hao Y J, Cheng Y,Wang Y J, Chen X R 2007 Chin. Phys. 16 217

    [9]

    Zhu X L, Li D H, Cheng Y L 2008 Solid State Commun. 147 301

    [10]

    Solozhenko V L, Andrault D, Fiquet G, Mezouar M, Rubie D C 2001 Appl. Phys. Lett. 78 1385

    [11]

    Solozhenko V L, Dubrovinskaia N A, Dubrovinsky L S 2004 Appl. Phys. Lett. 85 1508

    [12]

    Solozhenko V L, Kurakevych O O, Andrault D, Godec Y Le, Mezouar M 2009 Phys. Rev. Lett. 102 015506

    [13]

    Calandra M, Mauri F 2008 Phys. Rev. Lett. 101 016401

    [14]

    Yao Y, Tse J S, Klug D D 2009 Phys. Rev. B 80 094106

    [15]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.: Condens. Matter 14 2717

    [16]

    Ceperley D M, Alder B J 1990 Phys. Rev. B 41 7892

    [17]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [18]

    Ceperley D M, Alder B J 1980 Phys. Rev. Lett. 45 566

    [19]

    Perdew J P, Zunger A 1981 Phys. Rev. B 23 5048

    [20]

    Liang Y C, Zhang W Q, Zhao J Z, Chen L F 2009 Phys. Rev. B 80 113401

    [21]

    Shao X 2010 Chin. Phys. Lett. 27 016101

    [22]

    Teter D M 1998 MRS Bull. 23 22

    [23]

    Peng F, Chen D, Yang X D 2009 Solid State Communications 149 2135

    [24]

    Zhou W, Wu H, Yildirim T 2007 Phys. Rev. B 76 184113

    [25]

    Sung C M, Sung M 1996 Mater. Chem. Phys. 43 1

    [26]

    Born M 1940 Proc. Combridge Philos. Soc. 36 160

    [27]

    Neumann G S, Stixrude L 1999 Phys. Rev. B 60 791

    [28]

    Zha C S, Mao H-k W, Hemley R J 2004 Phys. Rev. B 70 174107

    [29]

    Ledbetter H M 1973 J. Phys. Chem. Solids 34 721

  • [1]

    Cohen M L 1985 Phys. Rev. B 32 7988

    [2]

    Liu Y L, Kong F J, Yang B W, Jiang G 2007 Atca Phys. Sin. 56 5413 (in Chinese) [刘以良, 孔凡杰, 杨缤维, 蒋刚 2007 物理学报 56 5413]

    [3]

    Liu Y Y, Bauer-Grosse E, Zhang Q Y 2007 Atca Phys. Sin. 56 6572(in Chinese)[刘燕燕, E. Bauer-Grosse, 张庆瑜 2007 物理学报 56 6572]

    [4]

    Novikov N V 2005 J. Mater. Proc. Tech. 161 169

    [5]

    Chung H Y, Weinberger M B, Levine J B 2007 Science 316 436

    [6]

    Kaner R B, Gilman J J, Tolbert S H 2005 Science 308 1268

    [7]

    Knittle E, Kaner R B, Jeanloz R, Cohen M L 1995 Phys. Rev. B 51 12149

    [8]

    Hao Y J, Cheng Y,Wang Y J, Chen X R 2007 Chin. Phys. 16 217

    [9]

    Zhu X L, Li D H, Cheng Y L 2008 Solid State Commun. 147 301

    [10]

    Solozhenko V L, Andrault D, Fiquet G, Mezouar M, Rubie D C 2001 Appl. Phys. Lett. 78 1385

    [11]

    Solozhenko V L, Dubrovinskaia N A, Dubrovinsky L S 2004 Appl. Phys. Lett. 85 1508

    [12]

    Solozhenko V L, Kurakevych O O, Andrault D, Godec Y Le, Mezouar M 2009 Phys. Rev. Lett. 102 015506

    [13]

    Calandra M, Mauri F 2008 Phys. Rev. Lett. 101 016401

    [14]

    Yao Y, Tse J S, Klug D D 2009 Phys. Rev. B 80 094106

    [15]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.: Condens. Matter 14 2717

    [16]

    Ceperley D M, Alder B J 1990 Phys. Rev. B 41 7892

    [17]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [18]

    Ceperley D M, Alder B J 1980 Phys. Rev. Lett. 45 566

    [19]

    Perdew J P, Zunger A 1981 Phys. Rev. B 23 5048

    [20]

    Liang Y C, Zhang W Q, Zhao J Z, Chen L F 2009 Phys. Rev. B 80 113401

    [21]

    Shao X 2010 Chin. Phys. Lett. 27 016101

    [22]

    Teter D M 1998 MRS Bull. 23 22

    [23]

    Peng F, Chen D, Yang X D 2009 Solid State Communications 149 2135

    [24]

    Zhou W, Wu H, Yildirim T 2007 Phys. Rev. B 76 184113

    [25]

    Sung C M, Sung M 1996 Mater. Chem. Phys. 43 1

    [26]

    Born M 1940 Proc. Combridge Philos. Soc. 36 160

    [27]

    Neumann G S, Stixrude L 1999 Phys. Rev. B 60 791

    [28]

    Zha C S, Mao H-k W, Hemley R J 2004 Phys. Rev. B 70 174107

    [29]

    Ledbetter H M 1973 J. Phys. Chem. Solids 34 721

  • [1] 曾小波, 朱晓玲, 李德华, 陈中钧, 艾应伟. IrB和IrB2力学性质的第一性原理计算. 物理学报, 2014, 63(15): 153101. doi: 10.7498/aps.63.153101
    [2] 程新路, 李德华, 朱晓玲, 苏文晋. PtN2的结构和力学性质的第一性原理计算. 物理学报, 2010, 59(3): 2004-2009. doi: 10.7498/aps.59.2004
    [3] 李青坤, 孙毅, 周玉, 曾凡林. 第一性原理研究hcp-C3碳体环材料的力学性质. 物理学报, 2012, 61(4): 043103. doi: 10.7498/aps.61.043103
    [4] 李青坤, 孙毅, 周玉, 曾凡林. 第一性原理研究bct-C4碳材料的强度性质. 物理学报, 2012, 61(9): 093104. doi: 10.7498/aps.61.093104
    [5] 代云雅, 杨莉, 彭述明, 龙兴贵, 周晓松, 祖小涛. 金属氢化物力学性能的第一性原理研究. 物理学报, 2012, 61(10): 108801. doi: 10.7498/aps.61.108801
    [6] 陈军, 王晓中, 林理彬, 何捷. 第一性原理方法研究He掺杂Al晶界力学性质. 物理学报, 2011, 60(7): 077104. doi: 10.7498/aps.60.077104
    [7] 胡雪兰, 卢睿智, 王智隆, 王亚如. Re对Ni3Al微观结构及力学性质影响的第一原理研究. 物理学报, 2020, 69(10): 107101. doi: 10.7498/aps.69.20200097
    [8] 孟凡顺, 赵星, 李久会. B掺入Cu∑5晶界间隙位性质的第一性原理研究. 物理学报, 2013, 62(11): 117102. doi: 10.7498/aps.62.117102
    [9] 付现凯, 陈万骐, 姜钟生, 杨波, 赵骧, 左良. Ti3O5弹性、电子和光学性质的第一性原理研究. 物理学报, 2019, 68(20): 207301. doi: 10.7498/aps.68.20190664
    [10] 赵立凯, 赵二俊, 武志坚. 5d过渡金属二硼化物的结构和热、力学性质的第一性原理计算. 物理学报, 2013, 62(4): 046201. doi: 10.7498/aps.62.046201
    [11] 李君, 刘立胜, 徐爽, 张金咏. 单轴压缩下Ti3B4的力学、电学性能及变形机制的第一性原理研究. 物理学报, 2020, 69(4): 043102. doi: 10.7498/aps.69.20191194
    [12] 程旭东, 吴海信, 唐小路, 王振友, 肖瑞春, 黄昌保, 倪友保. Na2Ge2Se5电子结构和光学性质的第一性原理研究. 物理学报, 2014, 63(18): 184208. doi: 10.7498/aps.63.184208
    [13] 王晓媛, 赵丰鹏, 王杰, 闫亚宾. 金属有机框架材料力学、电学及其应变调控特性的第一原理研究. 物理学报, 2016, 65(17): 178105. doi: 10.7498/aps.65.178105
    [14] 李世娜, 刘永. Cu3N弹性和热力学性质的第一性原理研究. 物理学报, 2010, 59(10): 6882-6888. doi: 10.7498/aps.59.6882
    [15] 吴若熙, 刘代俊, 于洋, 杨涛. CaS电子结构和热力学性质的第一性原理计算. 物理学报, 2016, 65(2): 027101. doi: 10.7498/aps.65.027101
    [16] 张季, 王迪, 张德明, 张庆礼, 万松明, 孙敦陆, 殷绍唐. BaBPO5晶体晶格振动光谱研究与第一性原理计算. 物理学报, 2013, 62(3): 037802. doi: 10.7498/aps.62.037802
    [17] 孟凡顺, 李久会, 赵星. 第一性原理研究Zn偏析对CuΣ5晶界的影响. 物理学报, 2014, 63(23): 237102. doi: 10.7498/aps.63.237102
    [18] 黄云霞, 曹全喜, 李智敏, 李桂芳, 王毓鹏, 卫云鸽. Al掺杂ZnO粉体的第一性原理计算及微波介电性质. 物理学报, 2009, 58(11): 8002-8007. doi: 10.7498/aps.58.8002
    [19] 林竹, 郭志友, 毕艳军, 董玉成. Cu掺杂的AlN铁磁性和光学性质的第一性原理研究. 物理学报, 2009, 58(3): 1917-1923. doi: 10.7498/aps.58.1917
    [20] 关丽, 李强, 赵庆勋, 郭建新, 周阳, 金利涛, 耿波, 刘保亭. Al和Ni共掺ZnO光学性质的第一性原理研究. 物理学报, 2009, 58(8): 5624-5631. doi: 10.7498/aps.58.5624
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1659
  • PDF下载量:  391
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-03-31
  • 修回日期:  2011-05-06
  • 刊出日期:  2012-01-05

BC5力学性质的第一性原理计算

  • 1. 四川师范大学物理与电子工程学院, 成都 610066;
  • 2. 四川大学物理科学与技术学院, 成都 610064
    基金项目: 

    国家自然科学基金 (批准号: 10974139, 41171175)资助的课题.

摘要: 采用平面波赝势密度泛函理论方法对060 GPa静水压下BC5 六角晶系P3m1和四方晶系I4m2结构的平衡态晶格常数、弹性常数、各向异性以及泊松比与Cauchy扰动进行了研究. 研究结果表明, BC5的两种结构在高压下是稳定的, 且不可压缩性随着压强的增加而增大. 另外, 对其电子结构也进行了计算, 计算结果表明, BC5存在一个较宽的带隙, 两种原子间有较强的共价杂化, 材料的性质主要由B的2p1和C的2p2态电子共同决定. 压强对材料带隙和费米能级附近的态密度几乎没有影响, 只引起微小的漂移, 可推断其很好的高压稳定性.

English Abstract

参考文献 (29)

目录

    /

    返回文章
    返回