搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

耦合不可压流场输运方程的格子Boltzmann方法研究

苏进 欧阳洁 王晓东

耦合不可压流场输运方程的格子Boltzmann方法研究

苏进, 欧阳洁, 王晓东
PDF
导出引用
导出核心图
  • 基于格子Boltzmann方法,提出了求解耦合不可压缩流场输运方程的一种改进数值方法. 该方法使用格子Boltzmann方法求解流场方程,并根据流场格子模型的密度分布函数构建了输运方程的二阶离散格式. 通过二维平板通道流场输运系统验证了该方法的有效性.数值结果表明,该方法可以有效地减少计算过程中出现的非物理耗散, 并克服了传统模型所需巨大存储量的缺点.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2012CB025903)和国家自然科学基金(批准号: 10871159)资助的课题.
    [1]

    Larson R G 1999 The Structure and Rheology of Complex Fluid (New York: Oxford University Press) p156

    [2]

    Wu Q Y, Wu J A 2002 Polymer Rheology (Beijing: Higher Education Press) p78 (in Chinese) [吴其晔, 巫静安 2002 高分子材料流变学(北京:高等教育出版社) 第78页]

    [3]

    Beris A N, Edwards B J 1999 Rheol. Acta 38 117

    [4]

    Bhave A V, Menon A K, Armstrong R C, Brown R A 1993 J. Rheol. 37 413

    [5]

    Guo Z L, Zhen C G 2008 Theory and Applications of Lattice Boltzmann Method (Beijing: Science Press) p77 (in Chinese) [郭照立, 郑楚光 2008 流体动力学的格子Boltzmann方法 (北京:科学出版社) 第77页]

    [6]

    Bhatnagar J, Gross E P, Krook M K 1954 Phys. Rev. 94 511

    [7]

    Zeng J B, Li L J, Liao Q, Chen Q H, Cui W Z, Pan L M 2010 Acta Phys. Sin. 59 178 (in Chinese) [曾建邦, 李隆键, 廖全, 陈清华, 崔文智, 潘良明 2010 物理学报 59 178]

    [8]

    Shi Z Y, Hu G H , Zhou Z W 2010 Acta Phys. Sin. 59 2595 (in Chinese) [石自媛, 胡国辉, 周哲玮 2010 物理学报 59 2595]

    [9]

    Denniston C, Orlandini E, Yeomans J M 2001 Phys. Rev. E 63 056702

    [10]

    Marenduzzo D, Orlandini E, Cates M E, Yeomans J M 2007 Phys. Rev. E 76 031921

    [11]

    Henrich O, Marenduzzo D, Stratford K, Cates M E 2009 Comput. Math. Appl. 8 47

    [12]

    Alexander K 2005 Ph. D. Dissertation (Yale: Yale University)

    [13]

    Guo Z L, Shi B C, Wang N C 2000 J. Comput. Phys. 165 288

  • [1]

    Larson R G 1999 The Structure and Rheology of Complex Fluid (New York: Oxford University Press) p156

    [2]

    Wu Q Y, Wu J A 2002 Polymer Rheology (Beijing: Higher Education Press) p78 (in Chinese) [吴其晔, 巫静安 2002 高分子材料流变学(北京:高等教育出版社) 第78页]

    [3]

    Beris A N, Edwards B J 1999 Rheol. Acta 38 117

    [4]

    Bhave A V, Menon A K, Armstrong R C, Brown R A 1993 J. Rheol. 37 413

    [5]

    Guo Z L, Zhen C G 2008 Theory and Applications of Lattice Boltzmann Method (Beijing: Science Press) p77 (in Chinese) [郭照立, 郑楚光 2008 流体动力学的格子Boltzmann方法 (北京:科学出版社) 第77页]

    [6]

    Bhatnagar J, Gross E P, Krook M K 1954 Phys. Rev. 94 511

    [7]

    Zeng J B, Li L J, Liao Q, Chen Q H, Cui W Z, Pan L M 2010 Acta Phys. Sin. 59 178 (in Chinese) [曾建邦, 李隆键, 廖全, 陈清华, 崔文智, 潘良明 2010 物理学报 59 178]

    [8]

    Shi Z Y, Hu G H , Zhou Z W 2010 Acta Phys. Sin. 59 2595 (in Chinese) [石自媛, 胡国辉, 周哲玮 2010 物理学报 59 2595]

    [9]

    Denniston C, Orlandini E, Yeomans J M 2001 Phys. Rev. E 63 056702

    [10]

    Marenduzzo D, Orlandini E, Cates M E, Yeomans J M 2007 Phys. Rev. E 76 031921

    [11]

    Henrich O, Marenduzzo D, Stratford K, Cates M E 2009 Comput. Math. Appl. 8 47

    [12]

    Alexander K 2005 Ph. D. Dissertation (Yale: Yale University)

    [13]

    Guo Z L, Shi B C, Wang N C 2000 J. Comput. Phys. 165 288

  • [1] 胡晓亮, 梁宏, 王会利. 高雷诺数下非混相Rayleigh-Taylor不稳定性的格子Boltzmann方法模拟. 物理学报, 2020, 69(4): 1-10. doi: 10.7498/aps.69.20191504
    [2] 宋锦, 魏梦可, 姜文安, 张晓芳, 韩修静, 毕勤胜. 经由脉冲式爆炸连接的复合式张弛振荡. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191812
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1746
  • PDF下载量:  874
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-05-04
  • 修回日期:  2012-05-28
  • 刊出日期:  2012-05-20

耦合不可压流场输运方程的格子Boltzmann方法研究

  • 1. 西北工业大学应用数学系, 西安 710129
    基金项目: 

    国家重点基础研究发展计划(批准号: 2012CB025903)和国家自然科学基金(批准号: 10871159)资助的课题.

摘要: 基于格子Boltzmann方法,提出了求解耦合不可压缩流场输运方程的一种改进数值方法. 该方法使用格子Boltzmann方法求解流场方程,并根据流场格子模型的密度分布函数构建了输运方程的二阶离散格式. 通过二维平板通道流场输运系统验证了该方法的有效性.数值结果表明,该方法可以有效地减少计算过程中出现的非物理耗散, 并克服了传统模型所需巨大存储量的缺点.

English Abstract

参考文献 (13)

目录

    /

    返回文章
    返回