搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

树叶状红外频段完美吸收器的仿真设计

苏斌 龚伯仪 赵晓鹏

树叶状红外频段完美吸收器的仿真设计

苏斌, 龚伯仪, 赵晓鹏
PDF
导出引用
导出核心图
  • 设计了一种由树叶状金属薄膜-介质层-金属薄膜构成的低剖面完美吸收器模型. 通过对金属介电性能采用Drude定理,仿真发现调节结构参数可在红外通讯频段几乎达到完美吸收 (吸收率为99.5%),并且在某些特定的结构参数下可以同时实现双频段的完美吸收 (其吸收率分别达到99.67%和97.13%),这在某种意义上展宽了吸收频带, 对红外吸收器的设计与应用极为有利.最后探索了叶颈宽度变化对双频吸收峰位置的影响, 以便对双峰吸收进行调频操作.这种红外频段的超材料吸收器具有结构简单、吸收效率极高、工作频段宽等优点.
    • 基金项目: 国家自然科学基金(批准号: 50872113, 50936002, 11174234)资助的课题.
    [1]

    Veselago V G 1967 Usp. Fiz. Nauk 92 517

    [2]

    Veselago V G 1968 Sov. Phys. Usp. 10 509

    [3]

    Pendry J B, Holden A J, Stewart W J, Youngs I 1996 Phys. Rev. Lett. 76 25

    [4]

    Pendry J B, Holden A J, Robbins D J, Stewart W J 1999 IEEE Trans. MTT 47 2075

    [5]

    Smith D R, Pendry J B 2006 J. Opt. Soc. Am. B 23 391

    [6]

    Shelby R A, Smith D R, Schulrz S 2001 Science 292 77

    [7]

    Zhao Q, Zhao X P, Kang L, Zhang F L, Liu Y H, Luo C R 2004 Acta Phys. Sin. 53 2206 (in Chinese) [赵乾, 赵晓鹏, 康雷, 张富利, 刘亚红, 罗春荣 2004 物理学报 53 2206]

    [8]

    Huangfu J T, Ran L, Chen H, Zhang X, Chen K, Grzegorczyk T M, Kong J A 2004 Appl. Phys. Lett. 84 1357

    [9]

    Liu Y H, Luo C R, Zhao X P 2007 Acta Phys. Sin. 56 5883 (in Chinese) [刘亚红, 罗春荣, 赵晓鹏 2007 物理学报 56 5883]

    [10]

    Zhou J F, Economon E N, Koschny T, Soukoulis C M 2006 Opt. Lett. 31 3620

    [11]

    Xu F, Bai Y, Qiao L J, Zhao H J, Zhou J 2009 Chin. Phys. B 18 1653

    [12]

    Yang Y M, Wang J F, Xia S, Bai P, Li Z, Wang J, Xu Z, Qu S B 2011 Chin. Phys. B 20 014101

    [13]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402

    [14]

    Gu C, Qu S B, Pei Z B, Xu Z 2011 Chin. Phys. B 20 037801

    [15]

    Tao H, Landy N I, Bingham C M, Zhang X, Averitt R D, Padilla W J 2008 Opt. Express 16 7181

    [16]

    Avitzour Y, Urzhumov Y A, Shvets G 2009 Phys. Rev. B 79 045131

    [17]

    Zhou X, Fu Q H, Zhao J, Yang Y, Zhao X P 2006 Opt. Express 14 7188

    [18]

    Liu B Q, Zhao X P, Zhu W R, Luo W, Cheng X C 2008 Adv. Funct. Mater. 18 3523

    [19]

    Liu H, Zhao X P, Yang Y, Li Q W, Lü J 2008 Adv. Mater. 20 2050

    [20]

    Zhu W R, Zhao X P, Gong B Y 2011 J. Appl. Phys. 109 093504

    [21]

    Zhu W R, Zhao X P, Gong B Y, Liu L H, Su B 2011 Appl. Phys. A 102 147

    [22]

    Zhang Y P, Zhao X P, Bao S, Luo C R 2010 Acta Phys. Sin. 59 6070 (in Chinese) [张燕萍, 赵晓鹏, 保石, 罗春荣 2010 物理学报 59 6070]

    [23]

    Bao S, Luo C R, Zhang Y P, Zhao X P 2010 Acta Phys. Sin. 59 3187 (in Chinese) [保石, 罗春荣, 张燕萍, 赵晓鹏 2010 物理学报 59 3187]

    [24]

    Dolling G, Enkrich C, Wegener M, Soukoulis C M, Linden S 2006 Opt. Lett. 31 1800

    [25]

    Tang S W, Zhu W R, Zhao X P 2009 Acta Phys. Sin. 58 3220 (in Chinese) [汤世伟, 朱卫仁, 赵晓鹏 2009 物理学报 58 3220]

    [26]

    Gu C, Qu S B, Pei Z B, Xu Z, Liu J, Gu W 2011 Chin. Phys. B 20 017801

    [27]

    Landy N I, Bingham C M, Tyler T, Jokerst N, Smith D R, Padilla W J 2009 Phys. Rev. B 79 125104

    [28]

    Smith D R, Schultz S 2002 Phys. Rev. B 65 195104

    [29]

    Chen X D, Grzegorczyk T M, Wu B I, Pacheco J, Kong J A 2004 Phys. Rev. E 70 016608

  • [1]

    Veselago V G 1967 Usp. Fiz. Nauk 92 517

    [2]

    Veselago V G 1968 Sov. Phys. Usp. 10 509

    [3]

    Pendry J B, Holden A J, Stewart W J, Youngs I 1996 Phys. Rev. Lett. 76 25

    [4]

    Pendry J B, Holden A J, Robbins D J, Stewart W J 1999 IEEE Trans. MTT 47 2075

    [5]

    Smith D R, Pendry J B 2006 J. Opt. Soc. Am. B 23 391

    [6]

    Shelby R A, Smith D R, Schulrz S 2001 Science 292 77

    [7]

    Zhao Q, Zhao X P, Kang L, Zhang F L, Liu Y H, Luo C R 2004 Acta Phys. Sin. 53 2206 (in Chinese) [赵乾, 赵晓鹏, 康雷, 张富利, 刘亚红, 罗春荣 2004 物理学报 53 2206]

    [8]

    Huangfu J T, Ran L, Chen H, Zhang X, Chen K, Grzegorczyk T M, Kong J A 2004 Appl. Phys. Lett. 84 1357

    [9]

    Liu Y H, Luo C R, Zhao X P 2007 Acta Phys. Sin. 56 5883 (in Chinese) [刘亚红, 罗春荣, 赵晓鹏 2007 物理学报 56 5883]

    [10]

    Zhou J F, Economon E N, Koschny T, Soukoulis C M 2006 Opt. Lett. 31 3620

    [11]

    Xu F, Bai Y, Qiao L J, Zhao H J, Zhou J 2009 Chin. Phys. B 18 1653

    [12]

    Yang Y M, Wang J F, Xia S, Bai P, Li Z, Wang J, Xu Z, Qu S B 2011 Chin. Phys. B 20 014101

    [13]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402

    [14]

    Gu C, Qu S B, Pei Z B, Xu Z 2011 Chin. Phys. B 20 037801

    [15]

    Tao H, Landy N I, Bingham C M, Zhang X, Averitt R D, Padilla W J 2008 Opt. Express 16 7181

    [16]

    Avitzour Y, Urzhumov Y A, Shvets G 2009 Phys. Rev. B 79 045131

    [17]

    Zhou X, Fu Q H, Zhao J, Yang Y, Zhao X P 2006 Opt. Express 14 7188

    [18]

    Liu B Q, Zhao X P, Zhu W R, Luo W, Cheng X C 2008 Adv. Funct. Mater. 18 3523

    [19]

    Liu H, Zhao X P, Yang Y, Li Q W, Lü J 2008 Adv. Mater. 20 2050

    [20]

    Zhu W R, Zhao X P, Gong B Y 2011 J. Appl. Phys. 109 093504

    [21]

    Zhu W R, Zhao X P, Gong B Y, Liu L H, Su B 2011 Appl. Phys. A 102 147

    [22]

    Zhang Y P, Zhao X P, Bao S, Luo C R 2010 Acta Phys. Sin. 59 6070 (in Chinese) [张燕萍, 赵晓鹏, 保石, 罗春荣 2010 物理学报 59 6070]

    [23]

    Bao S, Luo C R, Zhang Y P, Zhao X P 2010 Acta Phys. Sin. 59 3187 (in Chinese) [保石, 罗春荣, 张燕萍, 赵晓鹏 2010 物理学报 59 3187]

    [24]

    Dolling G, Enkrich C, Wegener M, Soukoulis C M, Linden S 2006 Opt. Lett. 31 1800

    [25]

    Tang S W, Zhu W R, Zhao X P 2009 Acta Phys. Sin. 58 3220 (in Chinese) [汤世伟, 朱卫仁, 赵晓鹏 2009 物理学报 58 3220]

    [26]

    Gu C, Qu S B, Pei Z B, Xu Z, Liu J, Gu W 2011 Chin. Phys. B 20 017801

    [27]

    Landy N I, Bingham C M, Tyler T, Jokerst N, Smith D R, Padilla W J 2009 Phys. Rev. B 79 125104

    [28]

    Smith D R, Schultz S 2002 Phys. Rev. B 65 195104

    [29]

    Chen X D, Grzegorczyk T M, Wu B I, Pacheco J, Kong J A 2004 Phys. Rev. E 70 016608

  • [1] 王冬, 陈代兵, 秦奋, 范植开. 双频磁绝缘线振荡器二维周期结构研究. 物理学报, 2009, 58(10): 6962-6972. doi: 10.7498/aps.58.6962
    [2] 马岩冰, 张怀武, 李元勋. 基于科赫分形的新型超材料双频吸收器. 物理学报, 2014, 63(11): 118102. doi: 10.7498/aps.63.118102
    [3] 沈晓鹏, 崔铁军, 叶建祥. 基于超材料的微波双波段吸收器. 物理学报, 2012, 61(5): 058101. doi: 10.7498/aps.61.058101
    [4] 刘亚红, 方石磊, 顾帅, 赵晓鹏. 多频与宽频超材料吸收器. 物理学报, 2013, 62(13): 134102. doi: 10.7498/aps.62.134102
    [5] 翟世龙, 王元博, 赵晓鹏. 基于声学超材料的低频可调吸收器. 物理学报, 2019, 68(3): 034301. doi: 10.7498/aps.68.20181908
    [6] 贾晓鹏, 梁中翥, 梁静秋, 李桂菊, 郑娜. 掺氮金刚石的光学吸收与氮杂质含量的分析研究. 物理学报, 2009, 58(11): 8039-8043. doi: 10.7498/aps.58.8039
    [7] 陈为兰, 顾培夫, 王 颖, 章岳光, 刘 旭. 红外薄膜中热应力的研究. 物理学报, 2008, 57(7): 4316-4321. doi: 10.7498/aps.57.4316
    [8] 樊京, 蔡广宇. 一种基于金属开口谐振环和杆阵列的左手材料宽带吸收器. 物理学报, 2010, 59(9): 6084-6088. doi: 10.7498/aps.59.6084
    [9] 王辉辉, 蒙林, 刘大刚, 刘腊群, 杨超. 基于相对论返波管的全三维PIC/PSO数值优化研究. 物理学报, 2013, 62(13): 138401. doi: 10.7498/aps.62.138401
    [10] 朱正和, 王藩侯, 闵军, 黄多辉. 外电场作用下MgO分子的特性研究. 物理学报, 2009, 58(5): 3052-3057. doi: 10.7498/aps.58.3052
    [11] 郭德成, 蒋晓东, 黄进, 向霞, 王凤蕊, 刘红婕, 周信达, 祖小涛. 紫外脉冲激光退火发次对KDP晶体抗损伤性能的影响. 物理学报, 2013, 62(14): 147803. doi: 10.7498/aps.62.147803
    [12] 杨鹏, 韩天成. 极化控制的双波段宽带红外吸收器研究. 物理学报, 2018, 67(10): 107801. doi: 10.7498/aps.67.20172716
    [13] 杨鹏, 秦晋, 徐进, 韩天成. 超薄柔性透射型超构材料吸收器. 物理学报, 2019, 68(8): 087802. doi: 10.7498/aps.68.20182225
    [14] 陈文豪, 杜磊, 殷雪松, 康莉, 王芳, 陈松. PbS红外探测器低频噪声物理模型及缺陷表征研究. 物理学报, 2011, 60(10): 107202. doi: 10.7498/aps.60.107202
    [15] 毛 威, 张书练. 基于双折射双频激光器中的调频回馈位移测量研究. 物理学报, 2007, 56(3): 1409-1414. doi: 10.7498/aps.56.1409
    [16] 陈代兵, 王冬, 范植开, 孟凡宝, 安海狮, 龚海涛, 秦奋. L波段双频磁绝缘线振荡器的实验研究. 物理学报, 2009, 58(7): 4548-4555. doi: 10.7498/aps.58.4548
    [17] 吴学健, 尉昊赟, 朱敏昊, 张继涛, 李岩. 基于飞秒光频梳的双频He-Ne激光器频率测量. 物理学报, 2012, 61(18): 180601. doi: 10.7498/aps.61.180601
    [18] 朱守深, 张书练, 刘维新, 牛海莎. HeNe双频激光器频差的激光内雕赋值法. 物理学报, 2014, 63(6): 064201. doi: 10.7498/aps.63.064201
    [19] 周仕浩, 房欣宇, 李猛猛, 俞叶峰, 陈如山. 基于双频可重构频率选择表面的RCS可实时编码吸波器. 物理学报, 2020, (): . doi: 10.7498/aps.69.20200606
    [20] 叶亦英, 李贺成, 宋祥芳, 许振嘉, 陈玉璋, 江德生, 宋春英. 硅、锗中氧的低温红外吸收. 物理学报, 1980, 29(7): 867-877. doi: 10.7498/aps.29.867
  • 引用本文:
    Citation:
计量
  • 文章访问数:  2186
  • PDF下载量:  667
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-09-15
  • 修回日期:  2011-12-21
  • 刊出日期:  2012-07-05

树叶状红外频段完美吸收器的仿真设计

  • 1. 西北工业大学理学院, 西安 710129
    基金项目: 

    国家自然科学基金(批准号: 50872113, 50936002, 11174234)资助的课题.

摘要: 设计了一种由树叶状金属薄膜-介质层-金属薄膜构成的低剖面完美吸收器模型. 通过对金属介电性能采用Drude定理,仿真发现调节结构参数可在红外通讯频段几乎达到完美吸收 (吸收率为99.5%),并且在某些特定的结构参数下可以同时实现双频段的完美吸收 (其吸收率分别达到99.67%和97.13%),这在某种意义上展宽了吸收频带, 对红外吸收器的设计与应用极为有利.最后探索了叶颈宽度变化对双频吸收峰位置的影响, 以便对双峰吸收进行调频操作.这种红外频段的超材料吸收器具有结构简单、吸收效率极高、工作频段宽等优点.

English Abstract

参考文献 (29)

目录

    /

    返回文章
    返回