搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于中红外光参量振荡器光束质量优化的90°像旋转四镜非平面环形谐振腔型设计与分析

刘景良 陈薪羽 王睿明 吴春婷 金光勇

引用本文:
Citation:

基于中红外光参量振荡器光束质量优化的90°像旋转四镜非平面环形谐振腔型设计与分析

刘景良, 陈薪羽, 王睿明, 吴春婷, 金光勇

Design and analysis of 90° image rotating four-mirror non-planar ring resonator based on mid-infrared optical parametric oscillator beam quality optimization

Liu Jing-Liang, Chen Xin-Yu, Wang Rui-Ming, Wu Chun-Ting, Jin Guang-Yong
PDF
HTML
导出引用
  • 为改善中红外光参量振荡器(OPO)激光输出光束质量, 设计了一种90°像旋转四镜非平面环形腔型结构. 通过建立单位球等效计算方法, 对此种特殊腔型结构存在的像旋转角进行计算, 并由此确定了适用于中红外OPO运行的90°像旋转谐振腔结构相关参数. 在此基础上进一步建立了非对称轴环形腔中光场模式自再现模型, 分析得出随着像旋转角由0°向90°变化, 谐振腔内光场模式逐渐均匀化, 当旋转角为90°时, 基模以及高阶模都表现出非常好的中心对称性. 基于此采用中红外ZnGeP2 OPO对所设计的腔型参数进行实验测量, 实现了光束质量$M^2_X=1.81 $$M^2_Y=1.61 $. 由此可以证明所设计的90°像旋转四镜非平面环形腔对中红外OPO激光系统的输出光束质量的优化有显著效果.
    Mid-infrared optical parametric oscillator (OPO) operating in the mid-infrared transmission window (3—5 μm wavelength range) is one of hot issues in the field of laser system. It has many applications in environmental detection, remote sensing, and medicine. Besides, this laser system is used as a key component of infrared countermeasures. The optical damage limit of nonlinear crystal is a great challenge to the mid-infrared OPO which is pumped by a nanosecond laser source. Therefore, the pump beam diameter should be appropriately increased to avoid damaging the crystal when scaling a nanosecond OPO to high pulse energy. The result of this design is that the Fresnel number in the cavity is increased and the beam quality is deteriorated. In order to improve the beam quality of mid-infrared OPO laser, a 90° image-rotating four-mirror non-planar ring resonator structure is designed. The advantages of this design include the general ring resonators, such as greatly reduced feedback into the pump laser and the avoidance of optical damage caused by standing wave cavity structure. Most importantly, the image rotating cavity can uniform the beam in the cavity and improve the beam quality. In this paper, the equivalent sphere representation of a four-mirror nonplanar ring resonator is established, and the image rotation angle of this special cavity structure is calculated. Based on this method, the parameters related to the 90° image rotating resonator structure suitable for mid-infrared OPO operation are designed. The self-reproduction of the transverse mode in the axially-asymmetric resonator is further established. It is found that the transverse mode in the resonator is gradually uniformed as the rotation angle of the image changes from 0° to 90°. When the rotation angle is 90°, the fundamental mode and the high-order mode both exhibit very good central symmetry. Finally, the mid-infrared ZnGeP2 OPO laser with the 90° image rotating resonator structure is used to verify the improvement of beam quality. The beam quality of $M_X^2=1.81 $ and $M_Y^2=1.61$ are achieved. It can be proved that the 90° rotating four-mirror non-planar ring resonator has a significant effect on the optimization of the output beam quality of the mid-infrared OPO laser system.
      通信作者: 金光勇, jgycust@163.com
    • 基金项目: 吉林省教育厅“十三五”科学技术研究项目(批准号: JJKH20181105KJ)、吉林省科技发展计划 (批准号: 20180101033JC)和长春市科技计划项目地院(校、所)合作专项(批准号: 17DY027)资助的课题
      Corresponding author: Jin Guang-Yong, jgycust@163.com
    • Funds: Project supported by the Foundation of Education Department of Jilin Province, China (Grant No. JJKH20181105KJ), the Foundation of Jilin Province Science and Technology Department, China (Grant No. 20180101033JC), and the Cooperation Foundation of Changchun Science and Technology Bureau, China (Grant No. 17DY027)
    [1]

    Mürtz M, Hering P 2008 Mid-Infrared Coherent Sources and Applications: Online Monitoring of Exhaled Breath Using Mid-Infrared Laser Spectroscopy (Vol. 1) (Germany: Springer) p535

    [2]

    Geiser P, Willer U, Walter D, Schade W 2006 Appl. Phys. B 83 175

    [3]

    Waynant R W, Ilev I K, Gannot I 2001 Philos. Trans. R. Soc. B 359 635Google Scholar

    [4]

    Stoeppler G, Schellhorn M, Eichhorn M 2012 Laser Phys. 22 1095Google Scholar

    [5]

    任钢, 钟鸣, 李彤, 牛瑞华, 曾饮勇, 龚赤冲, 何衡湘, 于淑范, 王滨 2006 红外与激光工程 3 5

    Ren G, Zhong M, Li T, Niu R H, Zeng Q Y, Gong C C, He H X, Yu S F, Wang B 2006 Infrared Laser Eng. 3 5

    [6]

    于永吉, 陈薪羽, 成丽波, 王超, 吴春婷, 董渊, 李述涛, 金光勇 2015 物理学报 22 234Google Scholar

    Yu Y J, Chen X Y, Cheng L B, Wang C, Wu C T, Dong Y, Li S T, Jin G Y 2015 Acta Phys. Sin. 22 234Google Scholar

    [7]

    王礼, 杨经纬, 蔡旭武, 王金涛, 吴海信, 吴先友, 江海河 2014 中国激光 41 37

    Wang L, Yang J W, Cai X W, Wang J T, Wu H X, Wu X Y, Jiang H H 2014 Chinese J. Lasers 41 37

    [8]

    Kadwani P, Gebhardt M, Gaida C, Shah L, Richardson M 2013 CLEO: Applications and Technology JW2A 29

    [9]

    姚宝权, 王月珠, 柳强, 王骐 2001 中国激光 28 693Google Scholar

    Yao B Q, Wang Y Z, Liu Q, Wang Q 2001 Chinese J. Lasers 28 693Google Scholar

    [10]

    Rustad G, Øystein Farsund, Arisholm G 2010 SPIE Solid State Lasers and Amplifiers IV, and High-Power Lasers Brussels, Belgium April 12−16, 7721 77210J

    [11]

    Lippert E, Fonnum H, Arisholm G, Stenersen K 2010 Opt. Express 18 26475Google Scholar

    [12]

    Haakestad M W, Fonnum H, Lippert E 2014 Opt. Express 22 8556Google Scholar

    [13]

    Shen Y J, Yao B Q, Cui Z, Duan X M, Ju Y L, Wang Y Z 2014 Appl. Phys. B 117 127Google Scholar

    [14]

    Qian C P, Shen Y J, Dai T Y, Duan X M, Yao B Q 2016 SPIE High-Power Lasers and Applications VIII Beijing, China October 12−14, 10016 100160G

    [15]

    安然, 范小贞, 卢建新, 文侨 2018 物理学报 67 074201Google Scholar

    An R, Fan X Z, Lu J X, Wen Q 2018 Acta Phys. Sin. 67 074201Google Scholar

    [16]

    蔡小天, 李霄, 赵国民 2017 光学学报 37 1219001

    Cai X T, Li X, Zhao G M 2017 Acta Opt. Sin. 37 1219001

    [17]

    方洪烈 1981 光学谐振腔理论 第23页

    Fang H L 1981 The Principle of the Optical Resonator (Vol. 1) (Beijing: Science Press) p23 (in Chinese)

    [18]

    张楚宾 1959 球面三角学 (北京: 高等教育出版社) 第14页

    Zhang C B 1959 Spherical Trigonometry (Vol. 1) (Beijing: Higher Education Press) p14 (in Chinese)

    [19]

    吕百达 2003激光光学 光束描述、传输变换与光腔技术物理(北京: 高等教育出版社) 第13页

    Lu B D 2003 Laser Optics: Beam Characterization, Propagation and Transformation, Resonator Technology and Physics (Vol. 3) (Beijing: Higher Education Press) p13 (in Chinese)

    [20]

    汪之国, 肖光宗, 丁志超, 卢广峰, 杨开勇 2015 中国激光 42 s102009

    Wang Z G, Xiao G Z, Ding Z C, Lu G F, Yang K Y 2015 Chinese J. Lasers 42 s102009

  • 图 1  中红外OPO四镜非平面环形腔示意图

    Fig. 1.  Schematic diagram of a four-mirror non-planar ring resonator mid-infrared OPO laser.

    图 2  非平行入射平面的参考系和像旋转示意图

    Fig. 2.  Diagram of reference frame and image rotation for nonparallel planes of incidence.

    图 3  简单四镜非平面环形腔示意图

    Fig. 3.  Example of a four-mirror nonplanar ring resonator.

    图 4  四镜非平面环形腔的两种等效球体表示方式 (a) 透明等效单位球体; (b) 非透明等效单位球体

    Fig. 4.  Two equivalent sphere representations of a four-mirror nonplanar ring resonator: (a) Transparent equivalent unit sphere; (b) non-transparent equivalent unit sphere

    图 5  90°像旋转四镜非平面环形腔三视图及单位球表示

    Fig. 5.  Diagram and unit sphere representation of a 90° image rotating four-mirror non-planar ring resonator.

    图 6  不同旋转角下四镜非平面环形腔内横模光强分布 (a) 0°旋转角光强分布; (b) 5°旋转角光强分布; (c) 45°旋转角光强分布; (d) 90°旋转角光强分布

    Fig. 6.  The intensity distribution of transverse mode in a four-mirror non-planar ring resonator at different rotation angles: (a) The intensity distribution at 0° rotation angle; (b) the intensity distribution at 5° rotation angle; (c) the intensity distribution at 45° rotation angle; (d) the intensity distribution at 90° rotation angle.

    图 7  90°像旋转四镜非平面环形腔内横模光强分布 (a) TEM00模; (b) TEM01模; (c) TEM10

    Fig. 7.  The intensity distribution of transverse mode in a 90° image rotating four-mirror non-planar ring resonator: (a) TEM00 mode; (b) TEM01 mode; (c) TEM10 mode

    图 8  不同腔型下中红外ZnGeP2 OPO输出光束质量 (a) 平平腔; (b) 90°像旋转四镜非平面环形腔

    Fig. 8.  The beam quality based on ZnGeP2 OPO in different resonators: (a) Plano-plano resonator; (b) 90° image rotating four-mirror non-planar ring resonator.

  • [1]

    Mürtz M, Hering P 2008 Mid-Infrared Coherent Sources and Applications: Online Monitoring of Exhaled Breath Using Mid-Infrared Laser Spectroscopy (Vol. 1) (Germany: Springer) p535

    [2]

    Geiser P, Willer U, Walter D, Schade W 2006 Appl. Phys. B 83 175

    [3]

    Waynant R W, Ilev I K, Gannot I 2001 Philos. Trans. R. Soc. B 359 635Google Scholar

    [4]

    Stoeppler G, Schellhorn M, Eichhorn M 2012 Laser Phys. 22 1095Google Scholar

    [5]

    任钢, 钟鸣, 李彤, 牛瑞华, 曾饮勇, 龚赤冲, 何衡湘, 于淑范, 王滨 2006 红外与激光工程 3 5

    Ren G, Zhong M, Li T, Niu R H, Zeng Q Y, Gong C C, He H X, Yu S F, Wang B 2006 Infrared Laser Eng. 3 5

    [6]

    于永吉, 陈薪羽, 成丽波, 王超, 吴春婷, 董渊, 李述涛, 金光勇 2015 物理学报 22 234Google Scholar

    Yu Y J, Chen X Y, Cheng L B, Wang C, Wu C T, Dong Y, Li S T, Jin G Y 2015 Acta Phys. Sin. 22 234Google Scholar

    [7]

    王礼, 杨经纬, 蔡旭武, 王金涛, 吴海信, 吴先友, 江海河 2014 中国激光 41 37

    Wang L, Yang J W, Cai X W, Wang J T, Wu H X, Wu X Y, Jiang H H 2014 Chinese J. Lasers 41 37

    [8]

    Kadwani P, Gebhardt M, Gaida C, Shah L, Richardson M 2013 CLEO: Applications and Technology JW2A 29

    [9]

    姚宝权, 王月珠, 柳强, 王骐 2001 中国激光 28 693Google Scholar

    Yao B Q, Wang Y Z, Liu Q, Wang Q 2001 Chinese J. Lasers 28 693Google Scholar

    [10]

    Rustad G, Øystein Farsund, Arisholm G 2010 SPIE Solid State Lasers and Amplifiers IV, and High-Power Lasers Brussels, Belgium April 12−16, 7721 77210J

    [11]

    Lippert E, Fonnum H, Arisholm G, Stenersen K 2010 Opt. Express 18 26475Google Scholar

    [12]

    Haakestad M W, Fonnum H, Lippert E 2014 Opt. Express 22 8556Google Scholar

    [13]

    Shen Y J, Yao B Q, Cui Z, Duan X M, Ju Y L, Wang Y Z 2014 Appl. Phys. B 117 127Google Scholar

    [14]

    Qian C P, Shen Y J, Dai T Y, Duan X M, Yao B Q 2016 SPIE High-Power Lasers and Applications VIII Beijing, China October 12−14, 10016 100160G

    [15]

    安然, 范小贞, 卢建新, 文侨 2018 物理学报 67 074201Google Scholar

    An R, Fan X Z, Lu J X, Wen Q 2018 Acta Phys. Sin. 67 074201Google Scholar

    [16]

    蔡小天, 李霄, 赵国民 2017 光学学报 37 1219001

    Cai X T, Li X, Zhao G M 2017 Acta Opt. Sin. 37 1219001

    [17]

    方洪烈 1981 光学谐振腔理论 第23页

    Fang H L 1981 The Principle of the Optical Resonator (Vol. 1) (Beijing: Science Press) p23 (in Chinese)

    [18]

    张楚宾 1959 球面三角学 (北京: 高等教育出版社) 第14页

    Zhang C B 1959 Spherical Trigonometry (Vol. 1) (Beijing: Higher Education Press) p14 (in Chinese)

    [19]

    吕百达 2003激光光学 光束描述、传输变换与光腔技术物理(北京: 高等教育出版社) 第13页

    Lu B D 2003 Laser Optics: Beam Characterization, Propagation and Transformation, Resonator Technology and Physics (Vol. 3) (Beijing: Higher Education Press) p13 (in Chinese)

    [20]

    汪之国, 肖光宗, 丁志超, 卢广峰, 杨开勇 2015 中国激光 42 s102009

    Wang Z G, Xiao G Z, Ding Z C, Lu G F, Yang K Y 2015 Chinese J. Lasers 42 s102009

计量
  • 文章访问数:  5944
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-11
  • 修回日期:  2019-06-09
  • 上网日期:  2019-09-01
  • 刊出日期:  2019-09-05

/

返回文章
返回