搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

周期性双势垒锯齿势中温差驱动的布朗热机

程海涛 何济洲 肖宇玲

引用本文:
Citation:

周期性双势垒锯齿势中温差驱动的布朗热机

程海涛, 何济洲, 肖宇玲

Brownian heat engine driven by temperature difference in a periodic double-barrier sawtooth potential

Cheng Hai-Tao, He Ji-Zhou, Xiao Yu-Ling
PDF
导出引用
  • 研究了周期性双势垒锯齿势中, 布朗粒子在外力作用下沿空间坐标方向交替地和高、低温热库接触构成的布朗热机的热力学性能. 考虑布朗粒子动能的变化以及高、 低温库之间热漏的存在, 通过数值计算分析势垒高度、势比、外力等参数对布朗热机效率的影响. 研究表明:当考虑热漏时, 布朗热机始终是不可逆的, 效率小于卡诺效率; 并且当热漏很小时, 势比的增大在一定程度上可提高布朗热机的效率; 其功率与效率之间的关系曲线为闭合线. 当不考虑热漏时, 其功率与效率之间的关系曲线为开型线, 但由于布朗粒子动能的变化引起的不可逆热流, 热机的效率依然小于卡诺效率.
    This paper has studied the thermodynamic performance of a Brownian heat engine, which is driven by temperature difference. Brownian particles move in the periodic double-barrier sawtooth potential with an external load force and contact with an alternating hot and cold reservoir. The kinetic energy change of the Brownian particles and the heat leak between hot and cold reservoir are considered simultaneously. The influence of the main parameters, including the height of barrier, the ratio of the low barrier to high barrier and the external load force, on the efficiency of Brownian heat engine is discussed in detail. When the heat leak between the two reservoirs is taken into account, the Brownian heat engine is irreversible, the efficiency is less than the Carnot efficiency. When the heat leak is small, the ratio of the low barrier to high barrier can increase the efficiency. The curve of the power output versus the efficiency is a loop-shaped one. When the heat leak is negligible, the curve of the power output versus the efficiency is an open-shaped one. The efficiency is still less than the Carnot efficiency, because the heat flow via kinetic energy change of the particles is irreversible.
    • 基金项目: 国家自然科学基金(批准号:11065008)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11065008).
    [1]

    Reimann P 2002 Phys. Rep. 361 57

    [2]

    Astumian R D, Hänggi P 2002 Phys. Today 55 33

    [3]

    Van den Broeck C, Kawai R, Meurs P 2004 Phys. Rev. Lett. 93 090601

    [4]

    Parrondo J M R, Blanco J M, Cao F J, Brito R 1998 Europhys. Lett. 43 248

    [5]

    Parrondo J M R, de Cisneros B J 2002 Appl. Phys. A 75 179

    [6]

    Bouzat S, Wio H S 2004 Eur. Phys. J. B 41 97

    [7]

    Feynman R P, Leighton R B, SandsM1966 The Feynman Lectures on Physics I (Reading MA: Addison-Wesley) 46.1–46.9

    [8]

    Velasco S, Roco J M M, Medina A, Calvo Hernández A 2001 J. Phys. D: Appl. Phys. 34 1000

    [9]

    Büttiker M 1987 J. Phys. B 68 161

    [10]

    van Kampen N G 1988 IBM J. Res. Dev. 32 107

    [11]

    Landauer R 1988 J. Stat. Phys. 53 233

    [12]

    Derényi I, Astumian R D 1999 Phys. Rev. E 59 R6219

    [13]

    Asfaw M, Bekele M 2004 Eur. Phys. J. B 38 457

    [14]

    Asfaw M, Bekele M 2005 Phys. Rev. E 72 056109

    [15]

    Asfaw M, Bekele M 2007 Physica A 384 346

    [16]

    Hondou T, Sekimoto K 2000 Phys. Rev. E 62 6021

    [17]

    Ai B Q, Xie H Z, Wen D H, Liu X M, Liu L G 2005 Eur. Phys. J. B 48 101

    [18]

    Ai B Q, Wang L Q, Liu L G 2006 Phys. Lett. A 352 286

    [19]

    Zhang Y, Lin B H, Chen J C 2006 Eur. Phys. J. B 53 481

    [20]

    Lin B H, Chen J C 2009 J. Phys. A: Math. Theor. 42 075006

    [21]

    Zhang Y P, He J Z, He X, Xiao Y L 2010 Commun. Theor. Phys. 54 857

    [22]

    Zhang Y P, He J Z 2010 Chin. Phys. Lett. 27 090502

    [23]

    Zhang Y P, He J Z, Ouyang H, Qian X X 2010 Phys. Scr. 82 055005

    [24]

    Ding Z M, Chen L G, Sun F R 2010 Braz. J. Phys. 40 141

    [25]

    Ding Z M, Chen L G, Sun F R 2010 Sci. China: Phys. Mech. Astron. 40 16 (in Chinese) [?L?, ? ?, ?á 2010 ¥I ??:?n? ?? U?? 40 16]

    [26]

    Gao T F, Zhang Y, Chen J C 2009 Chin. Phys. B 18 3279

    [27]

    Asfaw M 2008 Eur. Phys. J. B 65 109

    [28]

    Sancho J M, Miguel M S, Durr D 1982 J. Stat. Phys. 28 291

    [29]

    Yan Z J, Chen J C 1990 J. Phys. D: Appl. Phys. 23 136

    [30]

    Chen J C 1997 J. Phys. D: Appl. Phys. 30 582

  • [1]

    Reimann P 2002 Phys. Rep. 361 57

    [2]

    Astumian R D, Hänggi P 2002 Phys. Today 55 33

    [3]

    Van den Broeck C, Kawai R, Meurs P 2004 Phys. Rev. Lett. 93 090601

    [4]

    Parrondo J M R, Blanco J M, Cao F J, Brito R 1998 Europhys. Lett. 43 248

    [5]

    Parrondo J M R, de Cisneros B J 2002 Appl. Phys. A 75 179

    [6]

    Bouzat S, Wio H S 2004 Eur. Phys. J. B 41 97

    [7]

    Feynman R P, Leighton R B, SandsM1966 The Feynman Lectures on Physics I (Reading MA: Addison-Wesley) 46.1–46.9

    [8]

    Velasco S, Roco J M M, Medina A, Calvo Hernández A 2001 J. Phys. D: Appl. Phys. 34 1000

    [9]

    Büttiker M 1987 J. Phys. B 68 161

    [10]

    van Kampen N G 1988 IBM J. Res. Dev. 32 107

    [11]

    Landauer R 1988 J. Stat. Phys. 53 233

    [12]

    Derényi I, Astumian R D 1999 Phys. Rev. E 59 R6219

    [13]

    Asfaw M, Bekele M 2004 Eur. Phys. J. B 38 457

    [14]

    Asfaw M, Bekele M 2005 Phys. Rev. E 72 056109

    [15]

    Asfaw M, Bekele M 2007 Physica A 384 346

    [16]

    Hondou T, Sekimoto K 2000 Phys. Rev. E 62 6021

    [17]

    Ai B Q, Xie H Z, Wen D H, Liu X M, Liu L G 2005 Eur. Phys. J. B 48 101

    [18]

    Ai B Q, Wang L Q, Liu L G 2006 Phys. Lett. A 352 286

    [19]

    Zhang Y, Lin B H, Chen J C 2006 Eur. Phys. J. B 53 481

    [20]

    Lin B H, Chen J C 2009 J. Phys. A: Math. Theor. 42 075006

    [21]

    Zhang Y P, He J Z, He X, Xiao Y L 2010 Commun. Theor. Phys. 54 857

    [22]

    Zhang Y P, He J Z 2010 Chin. Phys. Lett. 27 090502

    [23]

    Zhang Y P, He J Z, Ouyang H, Qian X X 2010 Phys. Scr. 82 055005

    [24]

    Ding Z M, Chen L G, Sun F R 2010 Braz. J. Phys. 40 141

    [25]

    Ding Z M, Chen L G, Sun F R 2010 Sci. China: Phys. Mech. Astron. 40 16 (in Chinese) [?L?, ? ?, ?á 2010 ¥I ??:?n? ?? U?? 40 16]

    [26]

    Gao T F, Zhang Y, Chen J C 2009 Chin. Phys. B 18 3279

    [27]

    Asfaw M 2008 Eur. Phys. J. B 65 109

    [28]

    Sancho J M, Miguel M S, Durr D 1982 J. Stat. Phys. 28 291

    [29]

    Yan Z J, Chen J C 1990 J. Phys. D: Appl. Phys. 23 136

    [30]

    Chen J C 1997 J. Phys. D: Appl. Phys. 30 582

  • [1] 王子, 任捷. 周期驱动系统的非平衡热输运与热力学几何. 物理学报, 2021, 70(23): 230503. doi: 10.7498/aps.70.20211723
    [2] 廖天军, 吕贻祥. 热光伏能量转换器件的热力学极限与优化性能预测. 物理学报, 2020, 69(5): 057202. doi: 10.7498/aps.69.20191835
    [3] 刘晨昊, 刘天宇, 黄仁忠, 高天附, 舒咬根. 粗糙势中耦合布朗粒子的定向输运性能. 物理学报, 2019, 68(24): 240501. doi: 10.7498/aps.68.20191203
    [4] 夏舸, 杨立, 寇蔚, 杜永成. 基于变换热力学的三维任意形状热斗篷设计. 物理学报, 2017, 66(10): 104401. doi: 10.7498/aps.66.104401
    [5] 邓世杰, 赵宇宏, 侯华, 文志勤, 韩培德. 高压下Ti2AlX(X=C,N)的结构、力学性能及热力学性质. 物理学报, 2017, 66(14): 146101. doi: 10.7498/aps.66.146101
    [6] 李鹤龄, 王娟娟, 杨斌, 沈宏君. 由N-E-V分布及赝势法研究弱磁场中弱相互作用费米子气体的热力学性质. 物理学报, 2015, 64(4): 040501. doi: 10.7498/aps.64.040501
    [7] 邵宗乾, 陈金望, 李玉奇, 潘孝胤. 限制在一维谐振势下的三维自由电子气的一些热力学性质. 物理学报, 2014, 63(24): 240502. doi: 10.7498/aps.63.240502
    [8] 李廷华, 毛福春, 黄铭, 杨晶晶, 陈俊昌. 基于变换热力学的任意形状热集中器研究与设计. 物理学报, 2014, 63(5): 054401. doi: 10.7498/aps.63.054401
    [9] 夏少军, 陈林根, 戈延林, 孙丰瑞. 热漏对换热器(火积)耗散最小化的影响. 物理学报, 2014, 63(2): 020505. doi: 10.7498/aps.63.020505
    [10] 肖宇玲, 何济洲, 程海涛. 温库边界对布朗热机性能的影响. 物理学报, 2014, 63(20): 200501. doi: 10.7498/aps.63.200501
    [11] 赵守仁, 黄志鹏, 孙雷, 孙朋超, 张传军, 邬云华, 曹鸿, 王善力, 褚君浩. 肖特基势垒对CdS/CdTe薄膜电池J-V暗性能的影响. 物理学报, 2013, 62(16): 168801. doi: 10.7498/aps.62.168801
    [12] 李俊, 陈林根, 戈延林, 孙丰瑞. 正、反向两源热力循环有限时间热力学性能优化的研究进展. 物理学报, 2013, 62(13): 130501. doi: 10.7498/aps.62.130501
    [13] 许立军, 张鹤鸣. 环栅肖特基势垒金属氧化物半导体场效应管漏致势垒降低效应研究. 物理学报, 2013, 62(10): 108502. doi: 10.7498/aps.62.108502
    [14] 程海涛, 何济洲. 一维晶格中费曼棘齿-棘爪热机. 物理学报, 2013, 62(3): 030503. doi: 10.7498/aps.62.030503
    [15] 王晓艳, 张鹤鸣, 王冠宇, 宋建军, 秦珊珊, 屈江涛. 漏致势垒降低效应对短沟道应变硅金属氧化物半导体场效应管阈值电压的影响. 物理学报, 2011, 60(2): 027102. doi: 10.7498/aps.60.027102
    [16] 邓泽超, 罗青山, 褚立志, 丁学成, 梁伟华, 傅广生, 王英龙. 衬底加温和后续热退火法形成纳米硅晶粒成核势垒的比较. 物理学报, 2010, 59(7): 4802-4807. doi: 10.7498/aps.59.4802
    [17] 范召兰, 门福殿, 窦瑞波. 硬球势中相对论费米气体的热力学性质. 物理学报, 2010, 59(6): 3715-3719. doi: 10.7498/aps.59.3715
    [18] 吕兆承, 李广. 热磁预处理对Ni-Mn-Ga单晶磁学和力学性能的影响. 物理学报, 2009, 58(4): 2746-2751. doi: 10.7498/aps.58.2746
    [19] 丁宏林, 刘 奎, 王 祥, 方忠慧, 黄 健, 余林蔚, 李 伟, 黄信凡, 陈坤基. 控制氧化层对双势垒纳米硅浮栅存储结构性能的影响. 物理学报, 2008, 57(7): 4482-4486. doi: 10.7498/aps.57.4482
    [20] 厉彦民, 赵光安. 双极化子的能带,稳定性与热力学特性. 物理学报, 1984, 33(2): 273-276. doi: 10.7498/aps.33.273
计量
  • 文章访问数:  5424
  • PDF下载量:  329
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-04-02
  • 修回日期:  2011-05-04
  • 刊出日期:  2012-01-05

/

返回文章
返回