搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于光子晶体光纤中四波混频效应的单到双非归零到归零码型转换

惠战强 张建国

基于光子晶体光纤中四波混频效应的单到双非归零到归零码型转换

惠战强, 张建国
PDF
导出引用
导出核心图
  • 归零(RZ)码与非归零(NRZ)码是波分复用和时分复用系统中广泛采用的两种码型, 全光NRZ到RZ码型转换能完成从波分复用到时分复用的网络接口功能, 是未来透明光子网络中一项重要的全光信号处理技术. 提出并实验证实了一种基于色散平坦高非线性光子晶体光纤中四波混频效应的单到双NRZ到RZ码型转换方法, 将一束信号光与同步时钟脉冲同时输入色散平坦高非线性光子晶体光纤中, 通过四波混频过程, 产生两个携带该数据信息的闲频光, 从而实现了单到双的NRZ到RZ码型转换功能, 码型转换器工作波长在193 nm范围可调谐, 最大转换效率为-21 dB, 最优消光比和品质因子分别为11.9 dB和7.2. 该方法的特点在于基于光纤中的四波混频效应工作, 因而具有对调制格式和比特率透明的优点, 同时, 光子晶体光纤特有的高非线与色散平坦性, 既避免了使用传统光纤需要较长的长度, 又避免了波长设置不灵活的弊端, 并具备可进一步增加带宽的能力, 且在码型转换的同时, 实现了波长转换, 完成了双通道波长组播功能. 整个系统为全光纤设计, 结构简单, 性能可靠, 并易于与现有的光纤通信系统相容, 对促进超高速大容量光子网络的发展具有重要意义.
    • 基金项目: 中国科学院知识创新工程重要方向性项目(批准号: KGCX2-YW-108)和陕西省教育厅科研基金(批准号: 11JK0901)资助的课题.
    [1]

    Willner A E, Yilmaz O F, Wang J, Wu X X 2010 IEEE J. Select. Top. Quantum. Electron 16 320

    [2]

    Hayashi M, Tanaka H, Ohara K, Otani T 2002 IEEE J. Lightwave Technol. 20 236

    [3]

    Norte D, Willner A E 1995 IEEE Photon. Technol. Lett. 7 1354

    [4]

    Chou H F, Bowers J E 2007 IEEE J. Select. Top. Quantum Electron. 13 58

    [5]

    Huo L, Dong Y, Lou C Y 2002 Acta Electron. Sin. 30 1305

    [6]

    Lasri J, Devgan P, Grigoryan V S, Kumar P 2004 Conference on Lasers and Electro-Optics 17–21 May, 2004, San Francisco, U.S.A. pp16—21

    [7]

    Lin G, Yu K, Chang 2006 Opt. Lett. 31 1376

    [8]

    Noel L, Shan X, Ellis A D 1995 IEEE Electron. Lett. 31 277

    [9]

    Dong J, Zhang X L, Xu J 2007 Opt. Express 15 2907

    [10]

    Yang X, Mishra A K, Manning R J 2007 IEEE Electron. Lett. 43 469

    [11]

    Reale A, Lugli P, Betti S 2001 IEEE J. Select. Top. Quantum Electron. 7 703

    [12]

    Dong J, Zhang X, Wang F, Yu Y, Huang D 2008 IEEE Electron. Lett. 44 763

    [13]

    Kwok C H, Lin C L 2006 IEEE J. Select. Top. Quantum Electron. 12 451

    [14]

    Kuo B P P, Chui P C 2008 IEEE J. Lightwave Technol. 26 3770

    [15]

    Yu C, Yan L S, Luo L, Wang Y 2005 IEEE Photon. Technol. Lett. 17 636

    [16]

    Wang J, Sun J Q, Sun Q Z 2007 Opt. Lett. 32 2462

    [17]

    Wang D L, Sun J Q, Wang J 2008 Acta Phys. Sin. 57 252 (in Chinese) [汪大林, 孙军强, 王 健 2008 物理学报 57 252]

    [18]

    Astar W, Driscoll J B, Liu X P, Dadap J I 2010 IEEE J. Select. Top. Quantum Electron. 16 234.

    [19]

    Zhou L J, Chen H 2008 IEEE J. Lightwave Technol. 26 1950

    [20]

    Yan L S, Yi A L, PanW, Luo B, Ye J 2010 Opt. Express 18 21404

    [21]

    Wang Y, Yu C, Luo T, Yan L, Pan Z 2005 J. Lightwave Technol. 23 3331

    [22]

    Petropoulos P, Monro T M, Belardi W 2001 Opt. Lett. 26 1233

    [23]

    Russell P 2003 Science 299 358

    [24]

    Zsigri B, Peucheret C 2006 IEEE Photon. Technol. Lett. 18 2290

    [25]

    Fok M P, Shu C 2007 IEEE Photon. Technol. Lett. 19 1166

    [26]

    Liu X M 2008 Phys. Rev. A 77 043818

    [27]

    Liu X M, Zhou X Q, Lu C 2005 Phys. Rev. A 72 013811

    [28]

    Zhang J Y, Wu J, Feng C F 2007 IEEE Photon. Technol. Lett. 19 33

    [29]

    Bogris A, Syvridis D 2003 IEEE J. Lightwave Technol. 21 1892

  • [1]

    Willner A E, Yilmaz O F, Wang J, Wu X X 2010 IEEE J. Select. Top. Quantum. Electron 16 320

    [2]

    Hayashi M, Tanaka H, Ohara K, Otani T 2002 IEEE J. Lightwave Technol. 20 236

    [3]

    Norte D, Willner A E 1995 IEEE Photon. Technol. Lett. 7 1354

    [4]

    Chou H F, Bowers J E 2007 IEEE J. Select. Top. Quantum Electron. 13 58

    [5]

    Huo L, Dong Y, Lou C Y 2002 Acta Electron. Sin. 30 1305

    [6]

    Lasri J, Devgan P, Grigoryan V S, Kumar P 2004 Conference on Lasers and Electro-Optics 17–21 May, 2004, San Francisco, U.S.A. pp16—21

    [7]

    Lin G, Yu K, Chang 2006 Opt. Lett. 31 1376

    [8]

    Noel L, Shan X, Ellis A D 1995 IEEE Electron. Lett. 31 277

    [9]

    Dong J, Zhang X L, Xu J 2007 Opt. Express 15 2907

    [10]

    Yang X, Mishra A K, Manning R J 2007 IEEE Electron. Lett. 43 469

    [11]

    Reale A, Lugli P, Betti S 2001 IEEE J. Select. Top. Quantum Electron. 7 703

    [12]

    Dong J, Zhang X, Wang F, Yu Y, Huang D 2008 IEEE Electron. Lett. 44 763

    [13]

    Kwok C H, Lin C L 2006 IEEE J. Select. Top. Quantum Electron. 12 451

    [14]

    Kuo B P P, Chui P C 2008 IEEE J. Lightwave Technol. 26 3770

    [15]

    Yu C, Yan L S, Luo L, Wang Y 2005 IEEE Photon. Technol. Lett. 17 636

    [16]

    Wang J, Sun J Q, Sun Q Z 2007 Opt. Lett. 32 2462

    [17]

    Wang D L, Sun J Q, Wang J 2008 Acta Phys. Sin. 57 252 (in Chinese) [汪大林, 孙军强, 王 健 2008 物理学报 57 252]

    [18]

    Astar W, Driscoll J B, Liu X P, Dadap J I 2010 IEEE J. Select. Top. Quantum Electron. 16 234.

    [19]

    Zhou L J, Chen H 2008 IEEE J. Lightwave Technol. 26 1950

    [20]

    Yan L S, Yi A L, PanW, Luo B, Ye J 2010 Opt. Express 18 21404

    [21]

    Wang Y, Yu C, Luo T, Yan L, Pan Z 2005 J. Lightwave Technol. 23 3331

    [22]

    Petropoulos P, Monro T M, Belardi W 2001 Opt. Lett. 26 1233

    [23]

    Russell P 2003 Science 299 358

    [24]

    Zsigri B, Peucheret C 2006 IEEE Photon. Technol. Lett. 18 2290

    [25]

    Fok M P, Shu C 2007 IEEE Photon. Technol. Lett. 19 1166

    [26]

    Liu X M 2008 Phys. Rev. A 77 043818

    [27]

    Liu X M, Zhou X Q, Lu C 2005 Phys. Rev. A 72 013811

    [28]

    Zhang J Y, Wu J, Feng C F 2007 IEEE Photon. Technol. Lett. 19 33

    [29]

    Bogris A, Syvridis D 2003 IEEE J. Lightwave Technol. 21 1892

  • 引用本文:
    Citation:
计量
  • 文章访问数:  2211
  • PDF下载量:  407
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-01-24
  • 修回日期:  2011-03-24
  • 刊出日期:  2012-01-05

基于光子晶体光纤中四波混频效应的单到双非归零到归零码型转换

  • 1. 西安邮电学院电子工程学院, 西安 710061;
  • 2. 中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室, 西安 710119
    基金项目: 

    中国科学院知识创新工程重要方向性项目(批准号: KGCX2-YW-108)和陕西省教育厅科研基金(批准号: 11JK0901)资助的课题.

摘要: 归零(RZ)码与非归零(NRZ)码是波分复用和时分复用系统中广泛采用的两种码型, 全光NRZ到RZ码型转换能完成从波分复用到时分复用的网络接口功能, 是未来透明光子网络中一项重要的全光信号处理技术. 提出并实验证实了一种基于色散平坦高非线性光子晶体光纤中四波混频效应的单到双NRZ到RZ码型转换方法, 将一束信号光与同步时钟脉冲同时输入色散平坦高非线性光子晶体光纤中, 通过四波混频过程, 产生两个携带该数据信息的闲频光, 从而实现了单到双的NRZ到RZ码型转换功能, 码型转换器工作波长在193 nm范围可调谐, 最大转换效率为-21 dB, 最优消光比和品质因子分别为11.9 dB和7.2. 该方法的特点在于基于光纤中的四波混频效应工作, 因而具有对调制格式和比特率透明的优点, 同时, 光子晶体光纤特有的高非线与色散平坦性, 既避免了使用传统光纤需要较长的长度, 又避免了波长设置不灵活的弊端, 并具备可进一步增加带宽的能力, 且在码型转换的同时, 实现了波长转换, 完成了双通道波长组播功能. 整个系统为全光纤设计, 结构简单, 性能可靠, 并易于与现有的光纤通信系统相容, 对促进超高速大容量光子网络的发展具有重要意义.

English Abstract

参考文献 (29)

目录

    /

    返回文章
    返回