搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

H2的自由扩散和吸附状态的对比研究

戴伟 肖明 李志浩 唐永建

H2的自由扩散和吸附状态的对比研究

戴伟, 肖明, 李志浩, 唐永建
PDF
导出引用
导出核心图
  • 运用巨正则Monte Carlo方法, 模拟了H2在自由扩散状态下及碳纳米管吸附状态下的分布, 对H2的自由扩散和吸附状态进行了对比研究. 研究表明: 77 K和2 MPa下, (30, 30)扶手椅型碳纳米管质量储氢密度为3.74%, 77 K和10 MPa下, 质量储氢密度为7.4%. 吸附状态的H2分子主要汇聚在碳纳米管内外两个壁面.
    • 基金项目: 湖北省教育厅科学技术研究项目(批准号: B20113002)和湖北第二师范学院重点学科建设经费资助的课题.
    [1]

    Chen P, Xiong Z, Luo J, Lin J, Tan K L 2002 Nature 420 301

    [2]

    Schlapbach L, Züttel A 2001 Nature 414 353

    [3]

    Yang Q Y, Zhong C L 2005 J. Phys. Chem. B 109 11862

    [4]

    Jung D H, Kim D, Lee T B, Choi S B, Yoon J H, Kim J, Choi K, Choi S H 2006 J. Phys. Chem. B 110 22987

    [5]

    Dinca M, Yu A F, Long J R 2006 J. Am. Chem. Soc. 128 8904

    [6]

    Ward M D 2003 Science 300 1104

    [7]

    XuW, Tao Z L, Chen J 2006 Prog. Chem. 18 200 (in Chinese) [许炜, 陶占良, 陈军 2006 化学进展 18 200]

    [8]

    Cao D, Feng P, Wu J 2004 Nano Lett. 4 1489

    [9]

    Pan L, Sander M B, Huang X, Li J, Smith M, Bittner E, Bockrath B 2004 J. Am. Chem. Soc. 126 1308

    [10]

    Zheng H, Wang S Q, Cheng H M 2005 Acta Phys. Sin. 54 4852 (in Chinese) [郑宏, 王绍青, 成会明 2005 物理学报 54 4852 ]

    [11]

    Yi S P, Zhang H Y, Ouyang Y, Wang Y H, Pang J S 2006 Acta Phys. Sin. 55 2644 (in Chinese) [易双萍, 张海燕, 欧阳玉, 王银海, 庞晋山 2006 物理学报 55 2644]

    [12]

    Zhang X L, Huang Z, Chen B, Ma H F, Gao G Q 2007 Acta Phys. Sin. 56 4039 (in Chinese) [张秀兰, 黄整, 陈波, 麻焕锋, 高国强 2007 物理学报 56 4039 ]

    [13]

    Dai W, Tang Y J, Wang C Y, Sun W G 2009 Acta Phys. Sin. 58 7313 (in Chinese) [戴伟, 唐永建, 王朝阳, 孙卫国 2009 物理学报 58 7313]

    [14]

    Dai W, Luo J S, Tang Y J, Wang C Y, Chen S J, Sun W G 2009 Acta Phys. Sin. 58 1890 (in Chinese) [戴伟, 罗江山, 唐永建, 王朝阳, 陈善俊, 孙卫国 2009 物理学报 58 1890]

    [15]

    Shao X H, Wang W C, Xue R S, Shen Z M 2004 J. Phys. Chem. B 108 2970

    [16]

    Kabbour H, Bumann T F, Satcher J H, Saulnier A, Ahn C C 2006 Chem. Mater. 18 6085.

    [17]

    Kowalczyk P, Holyst R, Terrones M, Terrones H 2007 Phys. Chem. Chem. Phys. 9 1786

    [18]

    Chambers A, Park C, Terry R, Baker K, Rodriguez M N 1998 J. Phys. Chem. B 102 4253

    [19]

    Chen P, Wu X, Lin J, Tan K L 1999 Science 285 91

    [20]

    Dillon A C, Jones K M, Bekkedahl T A, Kiang C H, Bethune D S, Heben M J 1997 Nature 386 377

    [21]

    Ritschel M, Uhlemann M, Gutfleisch O, Leonhardt A, Graff A 2002 Appl. Phys. Lett. 80 2985

    [22]

    Bezus A G, Kiselev A V, LoPatkin A A, Du P 1978 J. Chem. Soc. 74 367

    [23]

    Kiselev A V, LoPatkin A A, Shulga A A 1985 Zeolites 5 261

    [24]

    Vlugt T J H, Krishna R, Smit B 1999 J. Phys. Chem. B 103 1102

    [25]

    Halgren T A 1992 J. Am. Chem. Soc. 114 7827

    [26]

    Cheng J, Yuan X, Zhao L, Huang D, Zhao M, Dai L, Ding R 2004 Carbon 42 2019

    [27]

    Cheng J, Zhang L, Ding R, Ding Z, Wang X, Wang Z 2007 Int. J. Hydrogen Energy 32 3402

  • [1]

    Chen P, Xiong Z, Luo J, Lin J, Tan K L 2002 Nature 420 301

    [2]

    Schlapbach L, Züttel A 2001 Nature 414 353

    [3]

    Yang Q Y, Zhong C L 2005 J. Phys. Chem. B 109 11862

    [4]

    Jung D H, Kim D, Lee T B, Choi S B, Yoon J H, Kim J, Choi K, Choi S H 2006 J. Phys. Chem. B 110 22987

    [5]

    Dinca M, Yu A F, Long J R 2006 J. Am. Chem. Soc. 128 8904

    [6]

    Ward M D 2003 Science 300 1104

    [7]

    XuW, Tao Z L, Chen J 2006 Prog. Chem. 18 200 (in Chinese) [许炜, 陶占良, 陈军 2006 化学进展 18 200]

    [8]

    Cao D, Feng P, Wu J 2004 Nano Lett. 4 1489

    [9]

    Pan L, Sander M B, Huang X, Li J, Smith M, Bittner E, Bockrath B 2004 J. Am. Chem. Soc. 126 1308

    [10]

    Zheng H, Wang S Q, Cheng H M 2005 Acta Phys. Sin. 54 4852 (in Chinese) [郑宏, 王绍青, 成会明 2005 物理学报 54 4852 ]

    [11]

    Yi S P, Zhang H Y, Ouyang Y, Wang Y H, Pang J S 2006 Acta Phys. Sin. 55 2644 (in Chinese) [易双萍, 张海燕, 欧阳玉, 王银海, 庞晋山 2006 物理学报 55 2644]

    [12]

    Zhang X L, Huang Z, Chen B, Ma H F, Gao G Q 2007 Acta Phys. Sin. 56 4039 (in Chinese) [张秀兰, 黄整, 陈波, 麻焕锋, 高国强 2007 物理学报 56 4039 ]

    [13]

    Dai W, Tang Y J, Wang C Y, Sun W G 2009 Acta Phys. Sin. 58 7313 (in Chinese) [戴伟, 唐永建, 王朝阳, 孙卫国 2009 物理学报 58 7313]

    [14]

    Dai W, Luo J S, Tang Y J, Wang C Y, Chen S J, Sun W G 2009 Acta Phys. Sin. 58 1890 (in Chinese) [戴伟, 罗江山, 唐永建, 王朝阳, 陈善俊, 孙卫国 2009 物理学报 58 1890]

    [15]

    Shao X H, Wang W C, Xue R S, Shen Z M 2004 J. Phys. Chem. B 108 2970

    [16]

    Kabbour H, Bumann T F, Satcher J H, Saulnier A, Ahn C C 2006 Chem. Mater. 18 6085.

    [17]

    Kowalczyk P, Holyst R, Terrones M, Terrones H 2007 Phys. Chem. Chem. Phys. 9 1786

    [18]

    Chambers A, Park C, Terry R, Baker K, Rodriguez M N 1998 J. Phys. Chem. B 102 4253

    [19]

    Chen P, Wu X, Lin J, Tan K L 1999 Science 285 91

    [20]

    Dillon A C, Jones K M, Bekkedahl T A, Kiang C H, Bethune D S, Heben M J 1997 Nature 386 377

    [21]

    Ritschel M, Uhlemann M, Gutfleisch O, Leonhardt A, Graff A 2002 Appl. Phys. Lett. 80 2985

    [22]

    Bezus A G, Kiselev A V, LoPatkin A A, Du P 1978 J. Chem. Soc. 74 367

    [23]

    Kiselev A V, LoPatkin A A, Shulga A A 1985 Zeolites 5 261

    [24]

    Vlugt T J H, Krishna R, Smit B 1999 J. Phys. Chem. B 103 1102

    [25]

    Halgren T A 1992 J. Am. Chem. Soc. 114 7827

    [26]

    Cheng J, Yuan X, Zhao L, Huang D, Zhao M, Dai L, Ding R 2004 Carbon 42 2019

    [27]

    Cheng J, Zhang L, Ding R, Ding Z, Wang X, Wang Z 2007 Int. J. Hydrogen Energy 32 3402

  • [1] 唐元洪, 林良武, 郭 池. 多壁碳纳米管束储氢机理的X射线吸收谱研究. 物理学报, 2006, 55(8): 4197-4201. doi: 10.7498/aps.55.4197
    [2] 孙卫国, 刘秀英, 王朝阳, 唐永建, 吴卫东, 张厚琼, 刘淼, 袁磊, 徐嘉靖. 单壁BN纳米管和碳纳米管物理吸附储氢性能的理论对比研究. 物理学报, 2009, 58(2): 1126-1131. doi: 10.7498/aps.58.1126
    [3] 沈超, 胡雅婷, 周硕, 马晓兰, 李华. 单壁碳纳米管低温及常温下储氢行为的模拟计算研究. 物理学报, 2013, 62(3): 038801. doi: 10.7498/aps.62.038801
    [4] 郑 宏, 王绍青, 成会明. 微孔对单壁纳米碳管储氢性能的影响. 物理学报, 2005, 54(10): 4852-4856. doi: 10.7498/aps.54.4852
    [5] 尹跃洪, 徐红萍. 电场诱导(MgO)4储氢的理论研究. 物理学报, 2019, 68(16): 163601. doi: 10.7498/aps.68.20190544
    [6] 元丽华, 巩纪军, 王道斌, 张材荣, 张梅玲, 苏俊燕, 康龙. 碱金属修饰的多孔石墨烯的储氢性能. 物理学报, 2020, 69(6): 068802. doi: 10.7498/aps.69.20190694
    [7] 尹跃洪, 陈宏善, 宋燕. 电场诱导(MgO)12储氢的从头计算研究. 物理学报, 2015, 64(19): 193601. doi: 10.7498/aps.64.193601
    [8] 祁鹏堂, 陈宏善. Li修饰的C24团簇的储氢性能. 物理学报, 2015, 64(23): 238102. doi: 10.7498/aps.64.238102
    [9] 周晓锋, 方浩宇, 唐春梅. 三明治结构graphene-2Li-graphene的储氢性能. 物理学报, 2019, 68(5): 053601. doi: 10.7498/aps.68.20181497
    [10] 颜克凤, 李小森, 孙丽华, 陈朝阳, 夏志明. 储氢笼型水合物生成促进机理的分子动力学模拟研究. 物理学报, 2011, 60(12): 128801. doi: 10.7498/aps.60.128801
    [11] 叶佳宇, 刘亚丽, 王靖林, 何垚. Zr催化剂对NaAlH4和Na3AlH6可逆储氢性能的影响. 物理学报, 2010, 59(6): 4178-4185. doi: 10.7498/aps.59.4178
    [12] 孙卫国, 唐永建, 王朝阳, 戴伟. 自制吸附仪储氢性能测试研究. 物理学报, 2009, 58(10): 7313-7316. doi: 10.7498/aps.58.7313
    [13] 赵银昌, 戴振宏, 隋鹏飞, 张晓玲. 二维Li+BC3结构高储氢容量的研究. 物理学报, 2013, 62(13): 137301. doi: 10.7498/aps.62.137301
    [14] 林怀俊, 朱云峰, 刘雅娜, 李李泉, 朱敏. 非晶态合金与氢相互作用的研究进展. 物理学报, 2017, 66(17): 176105. doi: 10.7498/aps.66.176105
    [15] 柏 鑫, 王鸣生, 刘 洋, 张耿民, 张兆祥, 赵兴钰, 郭等柱, 薛增泉. 碳纳米管端口的场蒸发. 物理学报, 2008, 57(7): 4596-4601. doi: 10.7498/aps.57.4596
    [16] 张助华, 郭万林, 郭宇锋. 轴向磁场对碳纳米管电子性质的影响. 物理学报, 2006, 55(12): 6526-6531. doi: 10.7498/aps.55.6526
    [17] 易双萍, 王 慧, 欧阳玉, 彭景翠. 碳纳米管的稳定性研究. 物理学报, 2008, 57(1): 615-620. doi: 10.7498/aps.57.615
    [18] 侯泉文, 曹炳阳, 过增元. 碳纳米管的热导率:从弹道到扩散输运. 物理学报, 2009, 58(11): 7809-7814. doi: 10.7498/aps.58.7809
    [19] 唐晶晶, 冯妍卉, 李威, 崔柳, 张欣欣. 碳纳米管电缆式复合材料的热导率. 物理学报, 2013, 62(22): 226102. doi: 10.7498/aps.62.226102
    [20] 温家乐, 徐志成, 古宇, 郑冬琴, 钟伟荣. 异质结碳纳米管的热整流效率. 物理学报, 2015, 64(21): 216501. doi: 10.7498/aps.64.216501
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1526
  • PDF下载量:  457
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-10-10
  • 修回日期:  2011-03-26
  • 刊出日期:  2012-01-05

H2的自由扩散和吸附状态的对比研究

  • 1. 湖北第二师范学院物理与电子信息学院, 武汉 430205;
  • 2. 中国工程物理研究院激光聚变研究中心, 绵阳 621900;
  • 3. 中国科学院武汉物理与数学研究所, 武汉 430071
    基金项目: 

    湖北省教育厅科学技术研究项目(批准号: B20113002)和湖北第二师范学院重点学科建设经费资助的课题.

摘要: 运用巨正则Monte Carlo方法, 模拟了H2在自由扩散状态下及碳纳米管吸附状态下的分布, 对H2的自由扩散和吸附状态进行了对比研究. 研究表明: 77 K和2 MPa下, (30, 30)扶手椅型碳纳米管质量储氢密度为3.74%, 77 K和10 MPa下, 质量储氢密度为7.4%. 吸附状态的H2分子主要汇聚在碳纳米管内外两个壁面.

English Abstract

参考文献 (27)

目录

    /

    返回文章
    返回