搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

沟槽角度对金属表面微射流性质的影响

王裴 邵建立 秦承森

引用本文:
Citation:

沟槽角度对金属表面微射流性质的影响

王裴, 邵建立, 秦承森

Groove angle effect on micro-jet from shocked metal surface

Wang Pei, Shao Jian-Li, Qin Cheng-Sen
PDF
导出引用
  • 基于光滑粒子流体动力学方法, 数值模拟了冲击加载下不同金属表面沟槽微射流现象, 重点分析了微射流头部速度及其分布随沟槽角度的变化规律. 研究结果发现, 喷射系数在沟槽半角为45° 附近达到最大, 随着角度的增加或减小喷射系数均较小; 而最大喷射速度随沟槽角度的增加近似成线性减小变化. 详细分析了不同角度沟槽诱发微射流的物质来源变化及其经历的动力学过程, 发现随着沟槽夹角增加, 射流物质来源由沟槽两侧逐步向沟槽底部过渡, 当沟槽半角在45° 附近, 形成射流的物质在沟槽底部和两侧近似均匀分布.
    According to smoothed particle hydrodynamics, we investigate numerically the micro-jets from grooved surfaces of different metals, where the velocities of jet head and material sources are discussed in detail. Our simulation results suggest that the jetting factor reaches its maximum at the half angle 45 degree, and the jetting factor reduces with the increase or decrease of the groove angle; also, the maximum velocity of jet shows a linear reduction with the increase of groove angel. Those results are consistent with the corresponding experimental results. The jetting material source and its dynamical process are analyzed. It is shown that with the increase of groove angel, the jet material sources transfer to the bottom of groove from two-side layer, while at the groove angel near 45 degree, a homogenous source layer throughout the groove comes into being. Finally, we further explain the jetting dynamics from different grooves by particle trajectory and its mechanical quantity history.
    [1]

    Walsh J M, Shreffler R G, Willig F G 1953 J. Appl. Phys. 24 349

    [2]

    Asay J R, Mix L P, Perry F C 1976 Appl. Phys. Lett. 29 284

    [3]

    Asay J R 1976 Material Ejection from Shock-Loaded Free Surface of Aluminum and Lead Sandia Laboratories, SAND76-0542

    [4]

    Zellner M B, Grover M, Hammerberg J E 2007 J. Appl. Phys. 102 013522

    [5]

    Zellner M B, Mcneil W V, Hammerberg J E 2008 J. Appl. Phys. 103 123502

    [6]

    Han C S 1989 Chin. J. High Press. Phys. 3 234 (in Chinese) [韩长生 1989 高压物理学报 3 234]

    [7]

    Chen J, Jing F Q, Zhang J L, Chen D Q 2002 Acta Phys. Sin. 51 2386 (in Chinese) [陈军, 经福谦, 张景琳, 陈栋泉 2002 物理学报 51 2386]

    [8]

    Germann T C, Hammerberg J E, Holian B L 2004 AIP Conference Proceedings 706 285

    [9]

    Chen Q F, Cao X L, Zhang Y, Cai L C, Chen D Q 2005 Chin. Phys. Lett. 22 3151

    [10]

    Shao J L, Wang P, He A M, Qin C S 2012 Acta Phys. Sin. 61 184701 (in Chinese) [邵建立, 王裴, 何安民, 秦承森 2012 物理学报 61 184701]

    [11]

    Wang P, Qin C S, Zhang S D, Liu C 2004 Chin. J. High Press. Phys. 18 149 (in Chinese) [王裴, 秦承森, 张树道, 刘超 2004 高压物理学报 18 149]

    [12]

    Wang P, Shao J L, Qin C S 2009 Acta Phys. Sin. 58 1064 (in Chinese) [王裴, 邵建立, 秦承森 2009 物理学报 58 1064]

    [13]

    Hu X M Research on Constitutive Model and Spallation of Material under Shock Load, GF-A, ZW-J-2002004 (in Chinese) [胡晓棉 冲击加载下材料本构及断裂研究 中国国防科学技术报告, GF-A, ZW-J-2002004]

    [14]

    Frachet V, Elias P, Martineau J 1988 Shock Waves in Condensed Matter (North-Holland, Amsterdam) p235

  • [1]

    Walsh J M, Shreffler R G, Willig F G 1953 J. Appl. Phys. 24 349

    [2]

    Asay J R, Mix L P, Perry F C 1976 Appl. Phys. Lett. 29 284

    [3]

    Asay J R 1976 Material Ejection from Shock-Loaded Free Surface of Aluminum and Lead Sandia Laboratories, SAND76-0542

    [4]

    Zellner M B, Grover M, Hammerberg J E 2007 J. Appl. Phys. 102 013522

    [5]

    Zellner M B, Mcneil W V, Hammerberg J E 2008 J. Appl. Phys. 103 123502

    [6]

    Han C S 1989 Chin. J. High Press. Phys. 3 234 (in Chinese) [韩长生 1989 高压物理学报 3 234]

    [7]

    Chen J, Jing F Q, Zhang J L, Chen D Q 2002 Acta Phys. Sin. 51 2386 (in Chinese) [陈军, 经福谦, 张景琳, 陈栋泉 2002 物理学报 51 2386]

    [8]

    Germann T C, Hammerberg J E, Holian B L 2004 AIP Conference Proceedings 706 285

    [9]

    Chen Q F, Cao X L, Zhang Y, Cai L C, Chen D Q 2005 Chin. Phys. Lett. 22 3151

    [10]

    Shao J L, Wang P, He A M, Qin C S 2012 Acta Phys. Sin. 61 184701 (in Chinese) [邵建立, 王裴, 何安民, 秦承森 2012 物理学报 61 184701]

    [11]

    Wang P, Qin C S, Zhang S D, Liu C 2004 Chin. J. High Press. Phys. 18 149 (in Chinese) [王裴, 秦承森, 张树道, 刘超 2004 高压物理学报 18 149]

    [12]

    Wang P, Shao J L, Qin C S 2009 Acta Phys. Sin. 58 1064 (in Chinese) [王裴, 邵建立, 秦承森 2009 物理学报 58 1064]

    [13]

    Hu X M Research on Constitutive Model and Spallation of Material under Shock Load, GF-A, ZW-J-2002004 (in Chinese) [胡晓棉 冲击加载下材料本构及断裂研究 中国国防科学技术报告, GF-A, ZW-J-2002004]

    [14]

    Frachet V, Elias P, Martineau J 1988 Shock Waves in Condensed Matter (North-Holland, Amsterdam) p235

  • [1] 朱琪, 王升涛, 赵福祺, 潘昊. 层错四面体对单晶铜层裂行为影响的分子动力学研究. 物理学报, 2020, 69(3): 036201. doi: 10.7498/aps.69.20191425
    [2] 马通, 谢红献. 单晶铁沿[101]晶向冲击过程中面心立方相的形成机制. 物理学报, 2020, 69(13): 130202. doi: 10.7498/aps.69.20191877
    [3] 郭策, 祝锡晶, 王建青, 叶林征. 超声场下刚性界面附近溃灭空化气泡的速度分析. 物理学报, 2016, 65(4): 044304. doi: 10.7498/aps.65.044304
    [4] 刘军, 付峥, 冯其京, 王裴. 爆轰驱动金属飞层对碰凸起和微射流形成的数值模拟研究. 物理学报, 2015, 64(23): 234701. doi: 10.7498/aps.64.234701
    [5] 苏铁熊, 马理强, 刘谋斌, 常建忠. 基于光滑粒子动力学方法的液滴冲击固壁面问题数值模拟. 物理学报, 2013, 62(6): 064702. doi: 10.7498/aps.62.064702
    [6] 邵建立, 王裴, 何安民, 秦承森, 辛建婷, 谷渝秋. 三角波加载下金属铝动态破坏现象的微观模拟. 物理学报, 2013, 62(7): 076201. doi: 10.7498/aps.62.076201
    [7] 张凤国, 周洪强. 晶粒尺度对延性金属材料层裂损伤的影响. 物理学报, 2013, 62(16): 164601. doi: 10.7498/aps.62.164601
    [8] 蒋国平, 浣石, 郝洪, 杜永峰, 焦楚杰. 钢纤维高强混凝土材料的气体炮试验研究. 物理学报, 2013, 62(1): 016201. doi: 10.7498/aps.62.016201
    [9] 蒋国平, 郝洪, 曾春航, 郝逸飞, 吴如军, 刘纪超. 冲击作用下的摩擦力效应实验研究. 物理学报, 2013, 62(11): 116203. doi: 10.7498/aps.62.116203
    [10] 马理强, 刘谋斌, 常建忠, 苏铁熊, 刘汉涛. 液滴冲击液膜问题的光滑粒子动力学模拟. 物理学报, 2012, 61(24): 244701. doi: 10.7498/aps.61.244701
    [11] 蒋国平, 焦楚杰, 肖波齐. 高强混凝土气体炮试验与高压状态方程研究. 物理学报, 2012, 61(2): 026701. doi: 10.7498/aps.61.026701
    [12] 毛杰健, 杨建荣, 李超英. 非均匀量子等离子体中的非线性波. 物理学报, 2012, 61(2): 020206. doi: 10.7498/aps.61.020206
    [13] 王军国, 刘福生, 李永宏, 张明建, 张宁超, 薛学东. 在石英界面处液态水的冲击结构相变. 物理学报, 2012, 61(19): 196201. doi: 10.7498/aps.61.196201
    [14] 王裴, 孙海权, 邵建立, 秦承森, 李欣竹. 微喷颗粒与气体混合过程的数值模拟研究. 物理学报, 2012, 61(23): 234703. doi: 10.7498/aps.61.234703
    [15] 邵建立, 王裴, 何安民, 秦承森. 冲击诱导金属铝表面微射流现象的微观模拟. 物理学报, 2012, 61(18): 184701. doi: 10.7498/aps.61.184701
    [16] 李永宏, 刘福生, 程小理, 张明建, 薛学东. 冲击加载条件下融石英对水的凝固相变的诱导效应. 物理学报, 2011, 60(12): 126202. doi: 10.7498/aps.60.126202
    [17] 李永宏, 刘福生, 马海云, 程小理, 马小娟, 孙燕云, 张明建, 薛学东. 动态荷载下石英玻璃的透光性及损伤演化研究. 物理学报, 2010, 59(3): 2104-2108. doi: 10.7498/aps.59.2104
    [18] 郭加宏, 戴世强, 代钦. 液滴冲击液膜过程实验研究. 物理学报, 2010, 59(4): 2601-2609. doi: 10.7498/aps.59.2601
    [19] 王裴, 邵建立, 秦承森. 加载波前沿宽度对铝表面微射流的影响. 物理学报, 2009, 58(2): 1064-1070. doi: 10.7498/aps.58.1064
    [20] 张 航, 郭蕴博, 陈 骁, 王 端, 程鹏俊. 颗粒物质在冲击作用下的堆积分布. 物理学报, 2007, 56(4): 2030-2036. doi: 10.7498/aps.56.2030
计量
  • 文章访问数:  7495
  • PDF下载量:  510
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-05-03
  • 修回日期:  2012-06-19
  • 刊出日期:  2012-12-05

/

返回文章
返回