搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微波阶梯阻抗变换器低气压电晕放电粒子模拟

刘雷 李永东 王瑞 崔万照 刘纯亮

微波阶梯阻抗变换器低气压电晕放电粒子模拟

刘雷, 李永东, 王瑞, 崔万照, 刘纯亮
PDF
导出引用
导出核心图
  • 采用3维粒子软件VORPAL对微波阶梯阻抗变换器中的低气压电晕放电过程进行了粒子模拟, 获得了放电过程中带电粒子实空间分布的时间演变图像, 分析并解释了其中低气压电晕放电机理和微放机理之间的关系. 模拟结果表明: 低气压电晕放电的阈值电压随着气压的增长呈现先减小后增加的变化趋势; 并且随着气压的增长, 微放电作用减弱, 低气压电晕放电作用增强. 通过对银和铜两种器壁材料放电阈值的比较, 获得了两种放电机理之间的临界气压.
    • 基金项目: 空间微波技术重点实验室基金(批准号: 9140C530103110C5301)和国家自然科学基金(批准号: 50977076)资助的课题.
    [1]

    Oraizi H 1996 IEEE Trans. Microwave Theory Tech. 44 389

    [2]

    Rasch J, Anderson D, Lisak M, Semenov V E, Puech J 2009 J. Phys. D: Appl. Phys. 42 055210

    [3]

    Frigui K, Baillargeat D, Verdeyme S, Bila S, Catherinot A, Puech J, Pacaud D 2008 IEEE Trans. Microwave Theory Tech. 56 3072

    [4]

    Sorolla E, Mattes M 2010 Microwave Rev 16 41

    [5]

    Ortega T P, Monge J, Marini S, Sanz J, Sorolla E, Mattes M, Vicente M, Gil J, Boria V E, Gimeno B 2010 IEEE Microwave Compon. Lett. 20 214

    [6]

    Wang R, Zhang N, Li Y, Cui W Z 2011 2011 International Conference on Electronics, Communications and Control (ICECC) Ningbo, China, September 9, 2011 p4517

    [7]

    Frigui K, Baillargeat D, Verdeyme S, Bila S, Catherinot A, Puech J, Pacaud D, Herren J J 2008 2008 IEEE MTT-S International Microwave Symposium Digest Limoges, France, June 15, 2008 p735

    [8]

    Rodney J, Vaughan M 1988 IEEE Trans. Electron Devices 35 1172

    [9]

    Udiljak R 2007 Multipactor in Low Pressure Gas and in Nonuniform RF Field Structures (Sweden: Chalmers University of Technology)

    [10]

    Nieter C, Cary J R 2004 J. Comput. Phys. 196 448

    [11]

    Furman M A, Pivi M 2002 Phys. Rev. ST Accel. Beams 5 124404

    [12]

    Raju G G 2006 Gaseous Electronics-Theory and Practice (1st Ed) (Florida: CRC Press) p230

  • [1]

    Oraizi H 1996 IEEE Trans. Microwave Theory Tech. 44 389

    [2]

    Rasch J, Anderson D, Lisak M, Semenov V E, Puech J 2009 J. Phys. D: Appl. Phys. 42 055210

    [3]

    Frigui K, Baillargeat D, Verdeyme S, Bila S, Catherinot A, Puech J, Pacaud D 2008 IEEE Trans. Microwave Theory Tech. 56 3072

    [4]

    Sorolla E, Mattes M 2010 Microwave Rev 16 41

    [5]

    Ortega T P, Monge J, Marini S, Sanz J, Sorolla E, Mattes M, Vicente M, Gil J, Boria V E, Gimeno B 2010 IEEE Microwave Compon. Lett. 20 214

    [6]

    Wang R, Zhang N, Li Y, Cui W Z 2011 2011 International Conference on Electronics, Communications and Control (ICECC) Ningbo, China, September 9, 2011 p4517

    [7]

    Frigui K, Baillargeat D, Verdeyme S, Bila S, Catherinot A, Puech J, Pacaud D, Herren J J 2008 2008 IEEE MTT-S International Microwave Symposium Digest Limoges, France, June 15, 2008 p735

    [8]

    Rodney J, Vaughan M 1988 IEEE Trans. Electron Devices 35 1172

    [9]

    Udiljak R 2007 Multipactor in Low Pressure Gas and in Nonuniform RF Field Structures (Sweden: Chalmers University of Technology)

    [10]

    Nieter C, Cary J R 2004 J. Comput. Phys. 196 448

    [11]

    Furman M A, Pivi M 2002 Phys. Rev. ST Accel. Beams 5 124404

    [12]

    Raju G G 2006 Gaseous Electronics-Theory and Practice (1st Ed) (Florida: CRC Press) p230

  • 引用本文:
    Citation:
计量
  • 文章访问数:  2098
  • PDF下载量:  1062
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-07-19
  • 修回日期:  2012-08-14
  • 刊出日期:  2013-01-05

微波阶梯阻抗变换器低气压电晕放电粒子模拟

  • 1. 西安交通大学电子物理与器件教育部重点实验室, 西安 710049;
  • 2. 空间微波技术重点实验室, 西安 710100
    基金项目: 

    空间微波技术重点实验室基金(批准号: 9140C530103110C5301)和国家自然科学基金(批准号: 50977076)资助的课题.

摘要: 采用3维粒子软件VORPAL对微波阶梯阻抗变换器中的低气压电晕放电过程进行了粒子模拟, 获得了放电过程中带电粒子实空间分布的时间演变图像, 分析并解释了其中低气压电晕放电机理和微放机理之间的关系. 模拟结果表明: 低气压电晕放电的阈值电压随着气压的增长呈现先减小后增加的变化趋势; 并且随着气压的增长, 微放电作用减弱, 低气压电晕放电作用增强. 通过对银和铜两种器壁材料放电阈值的比较, 获得了两种放电机理之间的临界气压.

English Abstract

参考文献 (12)

目录

    /

    返回文章
    返回