搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

细胞外溶液的近红外光热响应取决于其吸收特性

关魁文 李新宇 刘佳 孙长森

细胞外溶液的近红外光热响应取决于其吸收特性

关魁文, 李新宇, 刘佳, 孙长森
PDF
导出引用
导出核心图
  • 光热效应是激光与生物组织相互作用中的一个主要因素, 但其产生、传输和作用机理尚不十分清晰. 本文采用双波长近红外激光辐照和膜片钳技术相结合的方法, 选择980 nm和845 nm两个波长的近红外激光, 因其在水中的吸收系数分别为0.502 cm-1和0.0378 cm-1, 接近十倍差异. 若溶液是产生光热响应的主要介导物质, 则期望这两个波长的激光辐照所产生的溶液温升也将呈现相应的十倍比例关系. 研究中把溶液光热响应过程分为温升的建立和耗散两个阶段. 在温升建立阶段,理论模型的建立采用长时程 (激光作用时程长于介质的热弛豫时间)作用理论的研究结果, 实验是使用膜片钳系统来测量细胞外溶液中, 已进行温度标定的、充灌溶液的玻璃微电极电导变化, 根据这个电导变化来定量研究溶液光热响应与其吸收特性的关联性; 在耗散阶段, 使用膜片钳系统监测神经细胞的电生理功能变化. 理论和实验两方面的结果都表明, 溶液对低强度近红外激光的吸收特性决定了其光热响应. 这一结果, 可以直接用于生物组织光热响应特性相关的机理研究.
    • 基金项目: 国家自然科学基金 (批准号: 30870582, 31070757) 资助的课题.
    [1]

    Welch A J, Martin J C van Gemert 2011 Optical Thermal Response of Laser-Irradiated Tissue (Springer), 2nd Edition

    [2]

    Liu Y, Liu X J, Qi B B 2011 Acta Phys. Sin. 60 074204 (in Chinese) [刘迎, 刘小君, 齐贝贝 2011 物理学报 60 074204]

    [3]

    Deng Y, Igor M 2010 Acta Phys. Sin. 59 1396 (in Chinese) [邓勇, Igor Meglinski 2010 物理学报 59 1396]

    [4]

    Jacques S L 1992 Surg. Clin. North Am. 72 531

    [5]

    Vogel A, Venugopalan V 2003 Chem. Rev. 103 577

    [6]

    Lapotko D, Tat'yana R, Zharov V 2002 J. Biomed. Opt. 7 425

    [7]

    Yang S H, Yin G Z 2008 Acta Phys. Sin. 58 4760 (in Chinese) [杨思华, 阴广志 2008 物理学报 58 4760]

    [8]

    Lapotko D, Shnip A, Lukianova E 2005 J. Biomed. Opt. 10 014006

    [9]

    Wells J, Kao C, Mariappan K 2005 Opt. Lett. 30 504

    [10]

    Hirase H, Nikolenko V, Goldberg J 2002 J. Neurobiol. 51 237

    [11]

    Wells J, Kao C, Konrad P 2007 Biophys. J. 93 2567

    [12]

    Qiao X Y, Li G, Dong Y E 2008 Acta Phys. Sin. 57 1259 (in Chinese) [乔晓艳, 李刚, 董有尔 2008 物理学报 57 1259]

    [13]

    Qiao X Y, Li G, Lin L 2007 Acta Phys. Sin. 56 2448 (in Chinese) [乔晓艳, 李刚, 林凌 2007 物理学报 56 2448]

    [14]

    Chu Q J, Yin H W, Weng Y X 2007 Chin. Phys. 16 3052

    [15]

    Wells J, Konrad P, Kao C 2007 J. Neurosci. Meth. 163 326

    [16]

    Li W, Stuurman N, Ou G S 2012 Neurosci. Bull 28 333

    [17]

    Shapiro M G, Homma K, Villarreal S 2012 Nat. Commun. 3 1

    [18]

    Wieliczka M, Weng S, Querry R 1989 Appl. Opt. 28 1714

    [19]

    Palmer K F, Williams D 1974 J. Opt. Soc. Am. 64 1107

    [20]

    Martin G, Gerald L, Welchzk A 1996 Phys. Med. Biol. 41 1381

    [21]

    Guan K W, Jiang Y Q, Sun C S 2011 Opt. Laser Technol. 43 425

    [22]

    Bao M F, Qian Z Y, Li W T 2011 Acta Opt. Sin. 40 718 (in Chinese) [包美芳, 钱志余, 李韪韬 2011 光子学报 40 718]

    [23]

    Zhou J W, Xu X, Yin Z Q 2005 Chin. J. Lasers 32 139 (in Chinese) [周静伟, 徐旭, 尹招琴 2005 中国激光 32 139]

    [24]

    Choi B, Welch A J 2001 Lasers Surg. Med. 29 351

    [25]

    Yao J, Liu B, Qin F 2009 Biophys. J. 96 3611

    [26]

    Liang S S, Yang F, Zhou C 2009 Cell Biochem. Biophys. 53 33

    [27]

    Xu T, Zhang C P, Chen G Y 2005 Chin. Phys. 14 1813

    [28]

    Kuyucak S, Chung S H 1994 Biophys. Chem. 52 15

    [29]

    Hodgkin A, Huxley A 1952 J. Physiol. 117 500

    [30]

    Abbate G, Bernini U, Ragozzino E 1978 J. Phys. D: Appl. Phys. 11 1167

    [31]

    Jean K P 2006 J. Appl. Mech. 73 5

  • [1]

    Welch A J, Martin J C van Gemert 2011 Optical Thermal Response of Laser-Irradiated Tissue (Springer), 2nd Edition

    [2]

    Liu Y, Liu X J, Qi B B 2011 Acta Phys. Sin. 60 074204 (in Chinese) [刘迎, 刘小君, 齐贝贝 2011 物理学报 60 074204]

    [3]

    Deng Y, Igor M 2010 Acta Phys. Sin. 59 1396 (in Chinese) [邓勇, Igor Meglinski 2010 物理学报 59 1396]

    [4]

    Jacques S L 1992 Surg. Clin. North Am. 72 531

    [5]

    Vogel A, Venugopalan V 2003 Chem. Rev. 103 577

    [6]

    Lapotko D, Tat'yana R, Zharov V 2002 J. Biomed. Opt. 7 425

    [7]

    Yang S H, Yin G Z 2008 Acta Phys. Sin. 58 4760 (in Chinese) [杨思华, 阴广志 2008 物理学报 58 4760]

    [8]

    Lapotko D, Shnip A, Lukianova E 2005 J. Biomed. Opt. 10 014006

    [9]

    Wells J, Kao C, Mariappan K 2005 Opt. Lett. 30 504

    [10]

    Hirase H, Nikolenko V, Goldberg J 2002 J. Neurobiol. 51 237

    [11]

    Wells J, Kao C, Konrad P 2007 Biophys. J. 93 2567

    [12]

    Qiao X Y, Li G, Dong Y E 2008 Acta Phys. Sin. 57 1259 (in Chinese) [乔晓艳, 李刚, 董有尔 2008 物理学报 57 1259]

    [13]

    Qiao X Y, Li G, Lin L 2007 Acta Phys. Sin. 56 2448 (in Chinese) [乔晓艳, 李刚, 林凌 2007 物理学报 56 2448]

    [14]

    Chu Q J, Yin H W, Weng Y X 2007 Chin. Phys. 16 3052

    [15]

    Wells J, Konrad P, Kao C 2007 J. Neurosci. Meth. 163 326

    [16]

    Li W, Stuurman N, Ou G S 2012 Neurosci. Bull 28 333

    [17]

    Shapiro M G, Homma K, Villarreal S 2012 Nat. Commun. 3 1

    [18]

    Wieliczka M, Weng S, Querry R 1989 Appl. Opt. 28 1714

    [19]

    Palmer K F, Williams D 1974 J. Opt. Soc. Am. 64 1107

    [20]

    Martin G, Gerald L, Welchzk A 1996 Phys. Med. Biol. 41 1381

    [21]

    Guan K W, Jiang Y Q, Sun C S 2011 Opt. Laser Technol. 43 425

    [22]

    Bao M F, Qian Z Y, Li W T 2011 Acta Opt. Sin. 40 718 (in Chinese) [包美芳, 钱志余, 李韪韬 2011 光子学报 40 718]

    [23]

    Zhou J W, Xu X, Yin Z Q 2005 Chin. J. Lasers 32 139 (in Chinese) [周静伟, 徐旭, 尹招琴 2005 中国激光 32 139]

    [24]

    Choi B, Welch A J 2001 Lasers Surg. Med. 29 351

    [25]

    Yao J, Liu B, Qin F 2009 Biophys. J. 96 3611

    [26]

    Liang S S, Yang F, Zhou C 2009 Cell Biochem. Biophys. 53 33

    [27]

    Xu T, Zhang C P, Chen G Y 2005 Chin. Phys. 14 1813

    [28]

    Kuyucak S, Chung S H 1994 Biophys. Chem. 52 15

    [29]

    Hodgkin A, Huxley A 1952 J. Physiol. 117 500

    [30]

    Abbate G, Bernini U, Ragozzino E 1978 J. Phys. D: Appl. Phys. 11 1167

    [31]

    Jean K P 2006 J. Appl. Mech. 73 5

  • [1] 张冬仙, 刘 超, 章海军. 微纳米尺度红外光热膨胀效应及新型光热驱动方法研究. 物理学报, 2008, 57(5): 3107-3112. doi: 10.7498/aps.57.3107
    [2] 孙成明, 袁艳, 张修宝. 深空背景下空间目标红外特性建模方法研究. 物理学报, 2010, 59(10): 7523-7530. doi: 10.7498/aps.59.7523
    [3] 赵虎, 华灯鑫, 毛建东, 周春艳. 基于粒子谱的多波长激光雷达近场大气光学参数校正方法. 物理学报, 2015, 64(12): 124208. doi: 10.7498/aps.64.124208
    [4] 廖磊, 易旺民, 杨再华, 吴冠豪. 基于合成波长法的飞秒激光外差干涉测距方法. 物理学报, 2016, 65(14): 140601. doi: 10.7498/aps.65.140601
    [5] 牛余全, 郑斌, 崔春红, 魏巍, 张彩霞, 孟庆田. 双柱胶体粒子与管状生物膜的相互作用. 物理学报, 2014, 63(3): 038701. doi: 10.7498/aps.63.038701
    [6] 张新明, 周超英, Islam Shams, 刘家琦. 用格子Boltzmann方法数值模拟三维空化现象. 物理学报, 2009, 58(12): 8406-8414. doi: 10.7498/aps.58.8406
    [7] 李凌, 金贞兰, 李斌. 基于因子分析方法的相位同步脑电源的时-空动力学分析. 物理学报, 2011, 60(4): 048703. doi: 10.7498/aps.60.048703
    [8] 袁艳, 孙成明, 黄锋振, 赵慧洁, 王潜. 深空背景下空间目标紫外特性建模方法研究. 物理学报, 2011, 60(8): 089501. doi: 10.7498/aps.60.089501
    [9] 陈善静, 胡以华, 孙杜娟, 徐世龙. 基于高/多光谱图像空天一体融合仿真方法. 物理学报, 2013, 62(20): 204201. doi: 10.7498/aps.62.204201
    [10] 万峰, 武保剑, 曹亚敏, 王瑜浩, 文峰, 邱昆. 空频复用光纤中四波混频过程的解析分析方法. 物理学报, 2019, 68(11): 114207. doi: 10.7498/aps.68.20182129
    [11] 郑杭, 方俊鑫. 研究激子-声子相互作用问题的积分算符方法. 物理学报, 1986, 35(8): 1029-1039. doi: 10.7498/aps.35.1029
    [12] 高雪艳, 尤凯, 张晓美, 刘彦磊, 刘玉芳. 多参考组态相互作用方法研究BS+离子的势能曲线和光谱性质. 物理学报, 2013, 62(23): 233302. doi: 10.7498/aps.62.233302
    [13] 刘晓军, 苗凤娟, 李瑞, 张存华, 李奇楠, 闫冰. GeO分子激发态的电子结构和跃迁性质的组态相互作用方法研究. 物理学报, 2015, 64(12): 123101. doi: 10.7498/aps.64.123101
    [14] 谭维翰, 闫珂柱. 解有排斥相互作用中性原子的Bose-Einstein凝聚的一般方法. 物理学报, 1999, 48(11): 1983-1991. doi: 10.7498/aps.48.1983
    [15] 赵明文, 夏曰源, 刘向东, 马玉臣, 英敏菊. 非迭代冻结密度近似方法在计算氢键相互作用的合理性研究. 物理学报, 2002, 51(11): 2440-2445. doi: 10.7498/aps.51.2440
    [16] 刘俊岩, 王飞, 王晓春, 马莹, 王扬. 牙齿组织光热动态特性仿真与试验研究. 物理学报, 2015, 64(19): 194203. doi: 10.7498/aps.64.194203
    [17] 孙友文, 刘文清, 汪世美, 黄书华, 曾议, 谢品华, 陈军, 王亚萍, 司福祺. 单组分双分析通道红外气体检测方法研究. 物理学报, 2012, 61(14): 140704. doi: 10.7498/aps.61.140704
    [18] 邱小浪, 王爽爽, 张晓健, 朱仁江, 张鹏, 郭于鹤洋, 宋晏蓉. 双波长外腔面发射激光器. 物理学报, 2019, 68(11): 114204. doi: 10.7498/aps.68.20182261
    [19] Meglinski Igor, 邓勇. Monte Carlo方法模拟光在生物组织中传播的新进展. 物理学报, 2010, 59(2): 1396-1401. doi: 10.7498/aps.59.1396
    [20] 颜森林. 延时反馈半导体激光器双劈控制混沌方法研究. 物理学报, 2008, 57(5): 2827-2831. doi: 10.7498/aps.57.2827
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1220
  • PDF下载量:  655
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-09-22
  • 修回日期:  2012-10-18
  • 刊出日期:  2013-03-05

细胞外溶液的近红外光热响应取决于其吸收特性

  • 1. 大连理工大学, 物理与光电工程学院, 生物医学光学实验室, 大连 116023
    基金项目: 

    国家自然科学基金 (批准号: 30870582, 31070757) 资助的课题.

摘要: 光热效应是激光与生物组织相互作用中的一个主要因素, 但其产生、传输和作用机理尚不十分清晰. 本文采用双波长近红外激光辐照和膜片钳技术相结合的方法, 选择980 nm和845 nm两个波长的近红外激光, 因其在水中的吸收系数分别为0.502 cm-1和0.0378 cm-1, 接近十倍差异. 若溶液是产生光热响应的主要介导物质, 则期望这两个波长的激光辐照所产生的溶液温升也将呈现相应的十倍比例关系. 研究中把溶液光热响应过程分为温升的建立和耗散两个阶段. 在温升建立阶段,理论模型的建立采用长时程 (激光作用时程长于介质的热弛豫时间)作用理论的研究结果, 实验是使用膜片钳系统来测量细胞外溶液中, 已进行温度标定的、充灌溶液的玻璃微电极电导变化, 根据这个电导变化来定量研究溶液光热响应与其吸收特性的关联性; 在耗散阶段, 使用膜片钳系统监测神经细胞的电生理功能变化. 理论和实验两方面的结果都表明, 溶液对低强度近红外激光的吸收特性决定了其光热响应. 这一结果, 可以直接用于生物组织光热响应特性相关的机理研究.

English Abstract

参考文献 (31)

目录

    /

    返回文章
    返回