搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ArCO团簇光电离的实验和理论研究

单晓斌 赵玉杰 孔蕊弘 王思胜 盛六四 黄明强 王振亚

ArCO团簇光电离的实验和理论研究

单晓斌, 赵玉杰, 孔蕊弘, 王思胜, 盛六四, 黄明强, 王振亚
PDF
导出引用
导出核心图
  • 利用同步辐射光电离质谱装置,测量了ArCO范德瓦尔斯 (van der Waals, vdW) 团簇的的光电离质谱和光电离效率曲线.将它们与CO分子的绝对光吸收光谱比较, 发现在13.9到14.6 eV能量范围内的ArCO+的光电离效率曲线主要反映了收敛到 CO+ (X2+, v'= 1,2和3) Rydberg系列和收敛到 CO+ (A2)的n= 3的振动序列(v'= 69)的特点; 在14.615.75 eV光子能量范围内的ArCO的光电离效率曲线主要反映了CO的光吸收特性. 然而,由于Ar和CO之间的相互作用,其中的5个重要的光谱结构发生了蓝移; 而在15.7515.80 eV光子能量范围内的Ar-CO的光电离效率曲线,它的属性受到组分Ar和CO的共同影响. 与此同时,也从理论上计算了ArCO团簇的电离能、ArCO团簇和ArCO+ 团簇离子的离解能.
    • 基金项目: 国家自然科学基金(批准号: 10374048)资助的课题.
    [1]

    Jortner J, Scharf D, Landman U 1988 Proceedings for the 13th International School (Berlin, West Germany: Springer-Verlag) p148

    [2]

    Chatasinski G, Szczesniak M M 1994 Chem. Rev. 94 1723

    [3]

    Castleman Jr A W, Bowen Jr K H 1996 J. Phys. Chem. 100 12911

    [4]

    Kukawska-Tamawka B, Chafasinski G 1994 Chem. Phys. 101 4964

    [5]

    Lotrich V F, Avird A V D 2002 J. Chem. Phys. 118 1110

    [6]

    Havenith M, Schaab G W 2005 Z. Phys.Chem. 219 1053

    [7]

    Ogata T, Jaeger W, Ozier I, Gerry M C 1993 J. Chem. Phys. 96 9399

    [8]

    Cheele I, Havenith M 2003 Mol. Phys. 101 1423

    [9]

    Maehnert J, Baumgaertel H, Weitzel K M 1997 J. Chem. Phys. 107 6667

    [10]

    Norwood K, Guo J H, C Y N G 1989 Chemical Physics 129 109

    [11]

    Weitzel K M, Maehnert J 2002 Internal J. Mass spectrometry 214 175

    [12]

    Toczylowski R R, Cybulski S M 2000 J. Chem. Phys. 112 4604

    [13]

    Weitzel K M 1998 Chem. Phys. 237 43

    [14]

    Shin S, Shin S K, Tao F M 1996 J. Chem. Phys. 104 183

    [15]

    Gianturco F A, Paesani F 2001 J. Chem. Phys. 115 249

    [16]

    Castells V, Halberstdt N, Shin S K, Beaudet R A, Wittig C 1994 J. Chem. Phys. 101 1006

    [17]

    Cacheiro J L, Fernandez B, Pederson T B, Koch H 2003 J. Chem. Phys. 118 9596

    [18]

    Castejon H J, Salazar M C, Paz J L, Hernandez A J 2006 J. Molecular Structure: Theochem 801 1

    [19]

    Cacheiro J L, Fernandez B, Rizzo A, Jansik B, Pederson T B 2008 Mol. Phys. 106 881

    [20]

    Wang S S, Kong R H, Shan X B, Zhang Y W, Sheng L S, Wang Z Y, Hao L Q, Zhou S K 2006 Journal of Synchrotron Radiation 13 415

    [21]

    Gaussian 03, Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery Jr. J A, Vreven T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C, PopleBarone J A, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C, Pople J A 2003 Gaussian, Inc. Pittsburgh P A

    [22]

    Zhao Y J, Wang S S, Shan X B, Sheng L S, Hao L Q, Wang Z Y 2011 Acta Phys. Sin. 60 1 (in Chinese) [赵玉杰, 王思胜, 单晓斌, 盛六四, 郝立庆, 王振亚 2011 物理学报 60 1]

    [23]

    Hardis J E, Ferrett T A, Southworth S H, Parr A C, Roy P, Dehmer J L, Dehmer P M, Chupka W A 1988 J. Chem. Phys. 89 812

  • [1]

    Jortner J, Scharf D, Landman U 1988 Proceedings for the 13th International School (Berlin, West Germany: Springer-Verlag) p148

    [2]

    Chatasinski G, Szczesniak M M 1994 Chem. Rev. 94 1723

    [3]

    Castleman Jr A W, Bowen Jr K H 1996 J. Phys. Chem. 100 12911

    [4]

    Kukawska-Tamawka B, Chafasinski G 1994 Chem. Phys. 101 4964

    [5]

    Lotrich V F, Avird A V D 2002 J. Chem. Phys. 118 1110

    [6]

    Havenith M, Schaab G W 2005 Z. Phys.Chem. 219 1053

    [7]

    Ogata T, Jaeger W, Ozier I, Gerry M C 1993 J. Chem. Phys. 96 9399

    [8]

    Cheele I, Havenith M 2003 Mol. Phys. 101 1423

    [9]

    Maehnert J, Baumgaertel H, Weitzel K M 1997 J. Chem. Phys. 107 6667

    [10]

    Norwood K, Guo J H, C Y N G 1989 Chemical Physics 129 109

    [11]

    Weitzel K M, Maehnert J 2002 Internal J. Mass spectrometry 214 175

    [12]

    Toczylowski R R, Cybulski S M 2000 J. Chem. Phys. 112 4604

    [13]

    Weitzel K M 1998 Chem. Phys. 237 43

    [14]

    Shin S, Shin S K, Tao F M 1996 J. Chem. Phys. 104 183

    [15]

    Gianturco F A, Paesani F 2001 J. Chem. Phys. 115 249

    [16]

    Castells V, Halberstdt N, Shin S K, Beaudet R A, Wittig C 1994 J. Chem. Phys. 101 1006

    [17]

    Cacheiro J L, Fernandez B, Pederson T B, Koch H 2003 J. Chem. Phys. 118 9596

    [18]

    Castejon H J, Salazar M C, Paz J L, Hernandez A J 2006 J. Molecular Structure: Theochem 801 1

    [19]

    Cacheiro J L, Fernandez B, Rizzo A, Jansik B, Pederson T B 2008 Mol. Phys. 106 881

    [20]

    Wang S S, Kong R H, Shan X B, Zhang Y W, Sheng L S, Wang Z Y, Hao L Q, Zhou S K 2006 Journal of Synchrotron Radiation 13 415

    [21]

    Gaussian 03, Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery Jr. J A, Vreven T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C, PopleBarone J A, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C, Pople J A 2003 Gaussian, Inc. Pittsburgh P A

    [22]

    Zhao Y J, Wang S S, Shan X B, Sheng L S, Hao L Q, Wang Z Y 2011 Acta Phys. Sin. 60 1 (in Chinese) [赵玉杰, 王思胜, 单晓斌, 盛六四, 郝立庆, 王振亚 2011 物理学报 60 1]

    [23]

    Hardis J E, Ferrett T A, Southworth S H, Parr A C, Roy P, Dehmer J L, Dehmer P M, Chupka W A 1988 J. Chem. Phys. 89 812

  • [1] 董世剑, 郭红霞. AlGaN/GaN HEMT器件电离辐照损伤机理及偏置相关性研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191557
  • 引用本文:
    Citation:
计量
  • 文章访问数:  810
  • PDF下载量:  370
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-03-18
  • 修回日期:  2012-10-23
  • 刊出日期:  2013-03-05

ArCO团簇光电离的实验和理论研究

  • 1. 中国科学技术大学国家同步辐射实验室, 合肥 230029;
  • 2. 中国科学院安徽光学精密机械研究所环境光谱学实验室, 合肥 230031
    基金项目: 

    国家自然科学基金(批准号: 10374048)资助的课题.

摘要: 利用同步辐射光电离质谱装置,测量了ArCO范德瓦尔斯 (van der Waals, vdW) 团簇的的光电离质谱和光电离效率曲线.将它们与CO分子的绝对光吸收光谱比较, 发现在13.9到14.6 eV能量范围内的ArCO+的光电离效率曲线主要反映了收敛到 CO+ (X2+, v'= 1,2和3) Rydberg系列和收敛到 CO+ (A2)的n= 3的振动序列(v'= 69)的特点; 在14.615.75 eV光子能量范围内的ArCO的光电离效率曲线主要反映了CO的光吸收特性. 然而,由于Ar和CO之间的相互作用,其中的5个重要的光谱结构发生了蓝移; 而在15.7515.80 eV光子能量范围内的Ar-CO的光电离效率曲线,它的属性受到组分Ar和CO的共同影响. 与此同时,也从理论上计算了ArCO团簇的电离能、ArCO团簇和ArCO+ 团簇离子的离解能.

English Abstract

参考文献 (23)

目录

    /

    返回文章
    返回