搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于金银合金薄膜的近红外表面等离子体共振传感器研究

张喆 柳倩 祁志美

基于金银合金薄膜的近红外表面等离子体共振传感器研究

张喆, 柳倩, 祁志美
PDF
导出引用
导出核心图
  • 利用淀积在玻璃衬底上的金银合金薄膜作为表面等离子体共振(SPR)芯片, 构建了Kretschmann结构的近红外波长检测型SPR传感器. 采用不同浓度的葡萄糖水溶液测试了金银合金薄膜SPR传感器的折射率灵敏度. 实验结果表明随着入射角从7.5°增大到 9.5°, SPR吸收峰的半高峰宽从292.8 nm 减小到 131.4 nm, 共振波长从 1215 nm蓝移到 767.7 nm, 折射率灵敏度从35648.3 nm/RIU 减小到 9363.6 nm/RIU.在相同的初始共振波长(λR)下获得的金银合金薄膜SPR折射率灵敏度高于纯金膜(纯金膜在λR=1215 nm下的折射率灵敏度为29793.9 nm/RIU). 利用1 μmol/L的牛血清蛋白(BSA)水溶液测试了传感器对蛋白质吸附的响应.结果表明, BSA分子吸附使得金银合金薄膜SPR吸收峰红移了12.1 nm而纯金膜SPR吸收峰仅红移了9.5 nm. 实验结果还表明, 在相同λR下, 金银合金薄膜SPR吸收峰的半高峰宽大于纯金膜的半高峰宽, 因此其光谱分辨率比纯金膜SPR传感器低.
    • 基金项目: 国家自然科学基金(批准号: 60978042, 61078039) 和国家重点基础研究发展计划(批准号: 2009CB320300)资助的课题.
    [1]

    Homola J, Yee S S, Gauglitz G 1999 Sens. Actuators B 54 3

    [2]

    Boussaad S, Pean J, Tao N J 2000 Anal. Chem. 72 222

    [3]

    Qi Z M, Xia S H, Wei M D, Matsuda H, Zhou H S 2007 Appl. Opt. 46 7963

    [4]

    Mazumdar S D, Hartmann M, Kämpfer P, Keusgen M 2007 Biosens. Bioelectron. 22 2040

    [5]

    Shankaran D R, Gobi K V, Miura N 2007 Sens. Actuators B 121 158

    [6]

    Frischeisen J, Mayr C, Reinke N A, Nowy S, Brtting W 2008 Opt. Express 16 18426

    [7]

    Tanaka H, Hanasaki M, Isojima T, Takeuchi H, Shiroya T, Kawaguchi H, Shiroya T, Kawaguchi H 2009 J. Colloid Interface Sci. 70 259

    [8]

    Hodnik V, Anderluh G 2009 Sensors 9 1339

    [9]

    Chen X, Pan M, Jiang K 2010 Microelectron. Eng. 87 790

    [10]

    Huang Q, Wang J, Cao L R, Sun J, Zhang X D, Geng W D, Xiong S Z, Zhao Y 2010 Chin. Phys. Soc. 59 6532

    [11]

    Wu Y H, Hao P, Zhang P 2009 Chin. Phys. Soc. 58 1980

    [12]

    Zhong M L, Li S, Xiong Z H, Zhang Z Y 2012 Acta Phys. Sin. 61 027803 (in Chinese) [钟明亮, 李山, 熊祖洪, 张中月 2012 物理学报 61 027803]

    [13]

    Wu Y H, Hao P, Zhang P 2010 Acta Phys. Sin. 59 6532 (in Chinese) [吴一辉, 郝鹏, 张平2010物理学报 59 6532]

    [14]

    Hong X, Du D D, Qiu Z R, Zhang G X 2007 Acta Phys. Sin. 56 7219 (in Chinese) [洪 昕, 杜丹丹, 裘祖荣, 张国雄 2007 物理学报 56 7219]

    [15]

    Ong B H, Yuan X, Tjin S C 2007 Fiber and Integrated Optics 26 229

    [16]

    Zhai P, Guo J, Xiang J, Zhou F 2007 J. Phys. Chem. C 111 981

    [17]

    Zhu G, Li H, Clavero C, Yang K, Lukaszew R A, Podolskiy V A, Noginov M A 2009 Proceeding of the International Quantum Electronics Conference Baltimore, Maryland, May 31, 2009 pIFC4

    [18]

    Zhu J 2009 Nanoscale Res. Lett. 4 977

    [19]

    Lee K S, EI-Sayed M A 2006 J. Phys. Chem. B 110 19220

    [20]

    Hutter E, Fendler J H, Roy D 2001 J. Phys. Chem. B 105 11159

    [21]

    Zhou L, Yu X F, Fu X F, Hao Z H, Li K Y 2008 Chin. Phys. Lett. 25 1776

    [22]

    Http://www.reichertai.com/files/applications/1039637372.PDF[2012.7.18]

    [23]

    Zhang Z, Qi Z M 2010 Chin. J. Anal. Chem. 38 1538

    [24]

    Palik E D 1998 Handbook of Optical Constants of Solids (Vol.1) (San Diego: Academic)

  • [1]

    Homola J, Yee S S, Gauglitz G 1999 Sens. Actuators B 54 3

    [2]

    Boussaad S, Pean J, Tao N J 2000 Anal. Chem. 72 222

    [3]

    Qi Z M, Xia S H, Wei M D, Matsuda H, Zhou H S 2007 Appl. Opt. 46 7963

    [4]

    Mazumdar S D, Hartmann M, Kämpfer P, Keusgen M 2007 Biosens. Bioelectron. 22 2040

    [5]

    Shankaran D R, Gobi K V, Miura N 2007 Sens. Actuators B 121 158

    [6]

    Frischeisen J, Mayr C, Reinke N A, Nowy S, Brtting W 2008 Opt. Express 16 18426

    [7]

    Tanaka H, Hanasaki M, Isojima T, Takeuchi H, Shiroya T, Kawaguchi H, Shiroya T, Kawaguchi H 2009 J. Colloid Interface Sci. 70 259

    [8]

    Hodnik V, Anderluh G 2009 Sensors 9 1339

    [9]

    Chen X, Pan M, Jiang K 2010 Microelectron. Eng. 87 790

    [10]

    Huang Q, Wang J, Cao L R, Sun J, Zhang X D, Geng W D, Xiong S Z, Zhao Y 2010 Chin. Phys. Soc. 59 6532

    [11]

    Wu Y H, Hao P, Zhang P 2009 Chin. Phys. Soc. 58 1980

    [12]

    Zhong M L, Li S, Xiong Z H, Zhang Z Y 2012 Acta Phys. Sin. 61 027803 (in Chinese) [钟明亮, 李山, 熊祖洪, 张中月 2012 物理学报 61 027803]

    [13]

    Wu Y H, Hao P, Zhang P 2010 Acta Phys. Sin. 59 6532 (in Chinese) [吴一辉, 郝鹏, 张平2010物理学报 59 6532]

    [14]

    Hong X, Du D D, Qiu Z R, Zhang G X 2007 Acta Phys. Sin. 56 7219 (in Chinese) [洪 昕, 杜丹丹, 裘祖荣, 张国雄 2007 物理学报 56 7219]

    [15]

    Ong B H, Yuan X, Tjin S C 2007 Fiber and Integrated Optics 26 229

    [16]

    Zhai P, Guo J, Xiang J, Zhou F 2007 J. Phys. Chem. C 111 981

    [17]

    Zhu G, Li H, Clavero C, Yang K, Lukaszew R A, Podolskiy V A, Noginov M A 2009 Proceeding of the International Quantum Electronics Conference Baltimore, Maryland, May 31, 2009 pIFC4

    [18]

    Zhu J 2009 Nanoscale Res. Lett. 4 977

    [19]

    Lee K S, EI-Sayed M A 2006 J. Phys. Chem. B 110 19220

    [20]

    Hutter E, Fendler J H, Roy D 2001 J. Phys. Chem. B 105 11159

    [21]

    Zhou L, Yu X F, Fu X F, Hao Z H, Li K Y 2008 Chin. Phys. Lett. 25 1776

    [22]

    Http://www.reichertai.com/files/applications/1039637372.PDF[2012.7.18]

    [23]

    Zhang Z, Qi Z M 2010 Chin. J. Anal. Chem. 38 1538

    [24]

    Palik E D 1998 Handbook of Optical Constants of Solids (Vol.1) (San Diego: Academic)

  • [1] 周瑜, 操礼阳, 马晓萍, 邓丽丽, 辛煜. 脉冲射频容性耦合氩等离子体的发射探针诊断. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191864
    [2] 杨进, 陈俊, 王福地, 李颖颖, 吕波, 向东, 尹相辉, 张洪明, 符佳, 刘海庆, 臧庆, 储宇奇, 刘建文, 王勋禺, 宾斌, 何梁, 万顺宽, 龚学余, 叶民友. 东方超环上低杂波驱动等离子体环向旋转实验研究. 物理学报, 2020, 69(5): 055201. doi: 10.7498/aps.69.20191716
    [3] 罗菊, 韩敬华. 激光等离子体去除微纳颗粒的热力学研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191933
    [4] 刘家合, 鲁佳哲, 雷俊杰, 高勋, 林景全. 气体压强对纳秒激光诱导空气等离子体特性的影响. 物理学报, 2020, 69(5): 057401. doi: 10.7498/aps.69.20191540
    [5] 刘丽, 刘杰, 曾健, 翟鹏飞, 张胜霞, 徐丽君, 胡培培, 李宗臻, 艾文思. 快重离子辐照对YBa2Cu3O7-δ薄膜微观结构及载流特性的影响. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191914
    [6] 梁晋洁, 高宁, 李玉红. 表面效应对铁\begin{document}${\left\langle 100 \right\rangle} $\end{document}间隙型位错环的影响. 物理学报, 2020, 69(3): 036101. doi: 10.7498/aps.69.20191379
    [7] 任县利, 张伟伟, 伍晓勇, 吴璐, 王月霞. 高熵合金短程有序现象的预测及其对结构的电子、磁性、力学性质的影响. 物理学报, 2020, 69(4): 046102. doi: 10.7498/aps.69.20191671
    [8] 罗端, 惠丹丹, 温文龙, 李立立, 辛丽伟, 钟梓源, 吉超, 陈萍, 何凯, 王兴, 田进寿. 超紧凑型飞秒电子衍射仪的设计. 物理学报, 2020, 69(5): 052901. doi: 10.7498/aps.69.20191157
    [9] 吴美梅, 张超, 张灿, 孙倩倩, 刘玫. 三维金字塔立体复合基底表面增强拉曼散射特性. 物理学报, 2020, 69(5): 058101. doi: 10.7498/aps.69.20191636
    [10] 赵珊珊, 贺丽, 余增强. 偶极玻色-爱因斯坦凝聚体中的各向异性耗散. 物理学报, 2020, (): . doi: 10.7498/aps.69.20200025
    [11] 卢超, 陈伟, 罗尹虹, 丁李利, 王勋, 赵雯, 郭晓强, 李赛. 纳米体硅鳍形场效应晶体管单粒子瞬态中的源漏导通现象研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191896
  • 引用本文:
    Citation:
计量
  • 文章访问数:  892
  • PDF下载量:  1297
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-07-18
  • 修回日期:  2012-10-26
  • 刊出日期:  2013-03-20

基于金银合金薄膜的近红外表面等离子体共振传感器研究

  • 1. 中国科学院电子学研究所, 传感技术国家重点实验室, 北京 100190
    基金项目: 

    国家自然科学基金(批准号: 60978042, 61078039) 和国家重点基础研究发展计划(批准号: 2009CB320300)资助的课题.

摘要: 利用淀积在玻璃衬底上的金银合金薄膜作为表面等离子体共振(SPR)芯片, 构建了Kretschmann结构的近红外波长检测型SPR传感器. 采用不同浓度的葡萄糖水溶液测试了金银合金薄膜SPR传感器的折射率灵敏度. 实验结果表明随着入射角从7.5°增大到 9.5°, SPR吸收峰的半高峰宽从292.8 nm 减小到 131.4 nm, 共振波长从 1215 nm蓝移到 767.7 nm, 折射率灵敏度从35648.3 nm/RIU 减小到 9363.6 nm/RIU.在相同的初始共振波长(λR)下获得的金银合金薄膜SPR折射率灵敏度高于纯金膜(纯金膜在λR=1215 nm下的折射率灵敏度为29793.9 nm/RIU). 利用1 μmol/L的牛血清蛋白(BSA)水溶液测试了传感器对蛋白质吸附的响应.结果表明, BSA分子吸附使得金银合金薄膜SPR吸收峰红移了12.1 nm而纯金膜SPR吸收峰仅红移了9.5 nm. 实验结果还表明, 在相同λR下, 金银合金薄膜SPR吸收峰的半高峰宽大于纯金膜的半高峰宽, 因此其光谱分辨率比纯金膜SPR传感器低.

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回