搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

各向异性蜂窝夹芯材料的电磁传输性能分析算法研究

汤兴刚 张卫红 邱克鹏

各向异性蜂窝夹芯材料的电磁传输性能分析算法研究

汤兴刚, 张卫红, 邱克鹏
PDF
导出引用
导出核心图
  • 蜂窝夹芯结构作为天线罩最常用的透波材料, 其电各向异性特征对电磁传输性能具有不可忽略的影响. 本文基于各向异性蜂窝夹芯材料对电磁波水平极化和垂直极化分量的有效介电常数, 建立了多层蜂窝夹芯材料的等效传输线网络传输方程, 并给出了其传输系数的计算公式.该计算公式由于考虑了材料的三维各向异性特征, 不仅理论上可以计算多层各向异性介质板对任意方向入射电磁波的传输系数, 而且能够揭示出材料方向角对传输性能的影响规律.同时, 通过传输线网络等效, 其计算效率远高于有限元等方法.数值算例表明, 本方法能够有效地揭示蜂窝夹芯材料的各向异性对其传输性能的影响, 计算结果在入射角为0°–80° 时与有限元法符合很好.
    • 基金项目: 国家自然科学基金(批准号:51275424, 10925212, 11002112, 11002113) 和国家重点基础研究发展计划(批准号:2011CB610304)资助的课题.
    [1]

    Wo D Z 2000 Encyclopedia of Composites (Beijing:Chemical Industry Press) p1054 (in Chinese) [沃丁柱 2000 复合材料大全 (北京:化学工业出版社) 第1054页]

    [2]

    Chun H J, Shin H S 2003 Int. J. Modern Phys. B 17 1782

    [3]

    Dou W B, Sun Z L 1996 J. Infrared Millim. Waves 15 229 (in Chinese) [窦文斌, 孙忠良 1996 红外与毫米波学报 15 229]

    [4]

    Zhang K Q, Li D J 2001 Electromagnetic Theory for Microwaves and Optoelectronics (2nd Ed.) (Beijing:Publishing House of Electronics Industry) p482 (in Chinese) [张克潜, 李德杰 2001 微波与光电子学中的电磁理论(第二版)(北京:电子工业出版社) 第482页]

    [5]

    Kong J A (translated by Wu Ji) 2003 Electromagnetic Wave Theory (Beijing:Electron Industry Press) p197 (in Chinese) [Kong J A著 (吴季等译) 2003 电磁波理论(北京:电子工业出版社) 第197页]

    [6]

    Hu L B, Chui S T 2002 Phys. Rev. B 66 085108

    [7]

    Li J, Dong J F 2012 Acta Phys. Sin. 61 114101 (in Chinese) [李杰, 董建峰 2012 物理学报 61 114101]

    [8]

    Wilson G A, Thiel D V 2003 Prog. Electromagnet. Res. PIER 43 143

    [9]

    Luo S R, Lü B D 2003 Acta Phys. Sin. 52 3061 (in Chinese) [罗时荣, 吕百达 2003 物理学报 52 3061]

    [10]

    Huang Y C, Zhang T R, Chen S H, Song H Y, Li Y T, Zhang W L 2011 Acta Phys. Sin. 60 074212 (in Chinese) [黄永超, 张廷蓉, 陈森会, 宋宏远, 李艳桃, 张伟林 2011 物理学报 60 074212]

    [11]

    Hong Q Q, Yu Y Z, Cai Z S, Chen M S, Lin S D 2010 Acta Phys. Sin. 59 5235 (in Chinese) [洪清泉, 余燕忠, 蔡植善, 陈木生, 林顺达 2010 物理学报 59 5235]

    [12]

    Hong Q Q, Zhong W B, Yu Y Z, Cai Z S, Chen M S, Lin S D 2012 Acta Phys. Sin. 61 160302 (in Chinese) [洪清泉, 仲伟博, 余燕忠, 蔡植善, 陈木生, 林顺达 2012物理学报 61 160302]

    [13]

    Baida F I, Boutria M, Oussaid R, van Labeke D 2011 Phys. Rev. B 84 035107

    [14]

    Caballero B, García-Martín A, Cuevas J C 2012 Phys. Rev. B 85 245103

    [15]

    Zheng H X, Ge D B 2000 Acta Phys. Sin. 49 1702 (in Chinese) [郑宏兴, 葛德彪2000 物理学报 49 1702]

    [16]

    Yang L X, Ge D B, Wei B 2007 Acta Phys. Sin. 56 4509 (in Chinese) [杨利霞, 葛德彪, 魏兵 2007 物理学报 56 4509]

    [17]

    Yang L X, Xie Y T, Kong W, Yu P P, Wang G 2010 Acta Phys. Sin. 59 6089 (in Chinese) [杨利霞, 谢应涛, 孔娃, 于萍萍, 王刚 2010 物理学报 59 6089]

    [18]

    Oraizi H, Afsahi M 2007 Prog. Electromagnet. Res. PIER 74 217

    [19]

    Tang X G, Zhang W H, Bassir D H 2011 Advances in Heterogeneous Material Mechanics-3rd International Conference on Heterogeneous Material Mechanics Shanghai, China, May 22-26, 2011 p389

  • [1]

    Wo D Z 2000 Encyclopedia of Composites (Beijing:Chemical Industry Press) p1054 (in Chinese) [沃丁柱 2000 复合材料大全 (北京:化学工业出版社) 第1054页]

    [2]

    Chun H J, Shin H S 2003 Int. J. Modern Phys. B 17 1782

    [3]

    Dou W B, Sun Z L 1996 J. Infrared Millim. Waves 15 229 (in Chinese) [窦文斌, 孙忠良 1996 红外与毫米波学报 15 229]

    [4]

    Zhang K Q, Li D J 2001 Electromagnetic Theory for Microwaves and Optoelectronics (2nd Ed.) (Beijing:Publishing House of Electronics Industry) p482 (in Chinese) [张克潜, 李德杰 2001 微波与光电子学中的电磁理论(第二版)(北京:电子工业出版社) 第482页]

    [5]

    Kong J A (translated by Wu Ji) 2003 Electromagnetic Wave Theory (Beijing:Electron Industry Press) p197 (in Chinese) [Kong J A著 (吴季等译) 2003 电磁波理论(北京:电子工业出版社) 第197页]

    [6]

    Hu L B, Chui S T 2002 Phys. Rev. B 66 085108

    [7]

    Li J, Dong J F 2012 Acta Phys. Sin. 61 114101 (in Chinese) [李杰, 董建峰 2012 物理学报 61 114101]

    [8]

    Wilson G A, Thiel D V 2003 Prog. Electromagnet. Res. PIER 43 143

    [9]

    Luo S R, Lü B D 2003 Acta Phys. Sin. 52 3061 (in Chinese) [罗时荣, 吕百达 2003 物理学报 52 3061]

    [10]

    Huang Y C, Zhang T R, Chen S H, Song H Y, Li Y T, Zhang W L 2011 Acta Phys. Sin. 60 074212 (in Chinese) [黄永超, 张廷蓉, 陈森会, 宋宏远, 李艳桃, 张伟林 2011 物理学报 60 074212]

    [11]

    Hong Q Q, Yu Y Z, Cai Z S, Chen M S, Lin S D 2010 Acta Phys. Sin. 59 5235 (in Chinese) [洪清泉, 余燕忠, 蔡植善, 陈木生, 林顺达 2010 物理学报 59 5235]

    [12]

    Hong Q Q, Zhong W B, Yu Y Z, Cai Z S, Chen M S, Lin S D 2012 Acta Phys. Sin. 61 160302 (in Chinese) [洪清泉, 仲伟博, 余燕忠, 蔡植善, 陈木生, 林顺达 2012物理学报 61 160302]

    [13]

    Baida F I, Boutria M, Oussaid R, van Labeke D 2011 Phys. Rev. B 84 035107

    [14]

    Caballero B, García-Martín A, Cuevas J C 2012 Phys. Rev. B 85 245103

    [15]

    Zheng H X, Ge D B 2000 Acta Phys. Sin. 49 1702 (in Chinese) [郑宏兴, 葛德彪2000 物理学报 49 1702]

    [16]

    Yang L X, Ge D B, Wei B 2007 Acta Phys. Sin. 56 4509 (in Chinese) [杨利霞, 葛德彪, 魏兵 2007 物理学报 56 4509]

    [17]

    Yang L X, Xie Y T, Kong W, Yu P P, Wang G 2010 Acta Phys. Sin. 59 6089 (in Chinese) [杨利霞, 谢应涛, 孔娃, 于萍萍, 王刚 2010 物理学报 59 6089]

    [18]

    Oraizi H, Afsahi M 2007 Prog. Electromagnet. Res. PIER 74 217

    [19]

    Tang X G, Zhang W H, Bassir D H 2011 Advances in Heterogeneous Material Mechanics-3rd International Conference on Heterogeneous Material Mechanics Shanghai, China, May 22-26, 2011 p389

  • [1] 赵珊珊, 贺丽, 余增强. 偶极玻色-爱因斯坦凝聚体中的各向异性耗散. 物理学报, 2020, (): . doi: 10.7498/aps.69.20200025
    [2] 翁明, 谢少毅, 殷明, 曹猛. 介质材料二次电子发射特性对微波击穿的影响. 物理学报, 2020, (): . doi: 10.7498/aps.69.20200026
    [3] 吴雨明, 丁霄, 王任, 王秉中. 基于等效介质原理的宽角超材料吸波体的理论分析. 物理学报, 2020, 69(5): 054202. doi: 10.7498/aps.69.20191732
    [4] 左富昌, 梅志武, 邓楼楼, 石永强, 贺盈波, 李连升, 周昊, 谢军, 张海力, 孙艳. 多层嵌套掠入射光学系统研制及在轨性能评价. 物理学报, 2020, 69(3): 030702. doi: 10.7498/aps.69.20191446
    [5] 李闯, 李伟伟, 蔡理, 谢丹, 刘保军, 向兰, 杨晓阔, 董丹娜, 刘嘉豪, 陈亚博. 基于银纳米线电极-rGO敏感材料的柔性NO2气体传感器. 物理学报, 2020, 69(5): 058101. doi: 10.7498/aps.69.20191390
    [6] 梁琦, 王如志, 杨孟骐, 王长昊, 刘金伟. Al2O3衬底无催化剂生长GaN纳米线及其光学性能研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191923
    [7] 廖天军, 吕贻祥. 热光伏能量转换器件的热力学极限与优化性能预测. 物理学报, 2020, 69(5): 057202. doi: 10.7498/aps.69.20191835
    [8] 沈永青, 张志强, 廖斌, 吴先映, 张旭, 华青松, 鲍曼雨. 高功率脉冲磁控溅射技术制备掺氮类金刚石薄膜的磨蚀性能研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20200021
    [9] 潘军廷, 张宏. 极化电场对可激发介质中螺旋波的控制. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191934
    [10] 邹平, 吕丹, 徐桂英. 高压烧结制备Tb掺杂n型(Bi1–xTbx)2(Te0.9Se0.1)3合金及其微结构和热电性能. 物理学报, 2020, 69(5): 057201. doi: 10.7498/aps.69.20191561
    [11] 刘祥, 米文博. Verwey相变处Fe3O4的结构、磁性和电输运特性. 物理学报, 2020, 69(4): 040505. doi: 10.7498/aps.69.20191763
    [12] 章征伟, 王贵林, 张绍龙, 孙奇志, 刘伟, 赵小明, 贾月松, 谢卫平. 电作用量在磁驱动固体套筒内爆设计分析中的应用. 物理学报, 2020, 69(5): 050701. doi: 10.7498/aps.69.20191690
  • 引用本文:
    Citation:
计量
  • 文章访问数:  634
  • PDF下载量:  643
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-08-29
  • 修回日期:  2012-11-09
  • 刊出日期:  2013-04-20

各向异性蜂窝夹芯材料的电磁传输性能分析算法研究

  • 1. 西北工业大学机电学院, 西安 710072
    基金项目: 

    国家自然科学基金(批准号:51275424, 10925212, 11002112, 11002113) 和国家重点基础研究发展计划(批准号:2011CB610304)资助的课题.

摘要: 蜂窝夹芯结构作为天线罩最常用的透波材料, 其电各向异性特征对电磁传输性能具有不可忽略的影响. 本文基于各向异性蜂窝夹芯材料对电磁波水平极化和垂直极化分量的有效介电常数, 建立了多层蜂窝夹芯材料的等效传输线网络传输方程, 并给出了其传输系数的计算公式.该计算公式由于考虑了材料的三维各向异性特征, 不仅理论上可以计算多层各向异性介质板对任意方向入射电磁波的传输系数, 而且能够揭示出材料方向角对传输性能的影响规律.同时, 通过传输线网络等效, 其计算效率远高于有限元等方法.数值算例表明, 本方法能够有效地揭示蜂窝夹芯材料的各向异性对其传输性能的影响, 计算结果在入射角为0°–80° 时与有限元法符合很好.

English Abstract

参考文献 (19)

目录

    /

    返回文章
    返回