搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用群速度匹配的级联二阶非线性实现超短激光脉冲压缩

叶荣 张彬 李恪宇

利用群速度匹配的级联二阶非线性实现超短激光脉冲压缩

叶荣, 张彬, 李恪宇
PDF
导出引用
导出核心图
  • 提出了一种采用倾斜脉冲的级联二阶非线性来实现超短激光脉冲压缩的方法. 对基于单块BBO晶体中基频光与倍频光群速度匹配的级联二阶非线性的脉冲压缩方案进行了理论分析. 对比研究了群速度匹配与失配情况下利用级联二阶非线性进行脉冲压缩的效果, 并模拟分析了基频光与倍频光的位相失配量、非线性晶体长度、 基频光初始峰值光强和初始脉宽等因素对脉冲压缩效果的影响. 结果表明, 基频光与倍频光的群速度匹配将会大幅度改善压缩脉冲的时间波形和频谱分布. 通过对位相失配量、晶体长度、初始光强等参数的优化和选取可获得较理想的压缩效果. 采用倾斜脉冲的级联二阶非线性的脉宽压缩方法, 针对中心波长800 nm、脉宽100 fs, 峰值光强为50 GW/cm2的基频光脉冲, 采用25 mm厚BBO晶体, 当基频光与倍频光位相失配量Δk=60 mm-1(对应失谐角1.98°), 晶体外部脉冲前沿倾斜角γ0=74°时, 计算获得了质量较好的20 fs剩余基频光, 并同时产生了14 fs的倍频光.
    • 基金项目: 中国工程物理研究院重点实验室基金(批准号:9140C680301100C6806)与四川大学优秀青年学者科研基金资助的课题.
    [1]

    Zhu Y, Chen X W, Leng Y X, Liu J, Lin L H, Li R X, Xu Z Z 2005 Chin. J. Lasers 32 1614 (in Chinese) [朱毅, 陈晓伟, 冷雨欣, 刘军, 林礼煌, 李儒新, 徐至展 2005 中国激光 32 1614]

    [2]

    Agrawal G P (Write), Jia D F, Yu Z H (Trans) 2010 Nonlinear Fiber Optics {& Application of Nonlinear Fiber Optic} (2nd Ed) (Beijing: Publishing House of Electronics Industry) p562 (in Chinese) [阿戈沃(著), 贾东方, 余震虹(译) 2010 非线性光纤光学原理及应用(第二版) (北京: 电子工业出版社) 第562页]

    [3]

    Jin Y X, Zhao Y A, Shao J D, Fan Z X, Liu S J, Ma J Y, Shen Z C, Kong W J, Shen J 2007 Acta Phy. Sin. 564542 (in Chinese) [晋云霞, 赵元安, 邵建达, 范正修, 刘世杰, 麻健勇, 沈自才, 孔伟金, 沈健 2007 物理学报 56 4542]

    [4]

    Hauri C P, Kornelis W, Helbing F W, Heinrich A, Couairon A, Mysyrowicz A, Bieger J, Keller U 2004 Appl. Phys. B 79 673

    [5]

    Mevel E, Tcherbakoff O, Salin E, Constant E 2003 J. Opt. Soc. Am. B 20 105

    [6]

    Xu F, Liu J S, Li R X, Xu Z Z 2007 Chin. Opt. Lett. 5 490

    [7]

    Guo L W, Zhou C H 2006 Opt. Commun. 257 180

    [8]

    Chen X W, Zhu Y, Liu J, Leng Y X, Ge X C, Li R X, Xu Z Z 2005 Acta Phy. Sin. 545178 (in Chinese) [陈晓伟, 朱毅, 刘军, 冷雨欣, 葛晓春, 李儒新, 徐至展 2005 物理学报 54 5178]

    [9]

    Liu X, Qian L J, Wise F 1999 Opt. Lett. 24 1777

    [10]

    Dubietis A, Valiulis G, Danielius R, Piskarskas A 1996 Opt. Lett. 21 1262

    [11]

    Liu H J, Chen G F, Zhao W, Wang Y S, Cheng Z 2003 Acta Optica Sinica 23 11 (in Chinese) [刘红军, 陈国夫, 赵卫, 王屹山, 程昭 2003 光学学报 23 11]

    [12]

    Wang K, Qian L J, Zhu H Y 2008 Chinese Science Bulletin 53 45 (in Chinese) [王科, 钱列, 朱鹤元 2008 科学通报 53 45]

    [13]

    Morten B, Wise F W 2010 Phys. Rev. A 81 053815

    [14]

    Sidick E, Knoesen A, Dienes A 1995 J. Opt. Soc. Am. B 12 1704

    [15]

    Sidick E, Knoesen A, Dienes A 1994 Opt. Lett. 19 266

    [16]

    Weiner A M 1983 IEEE J. Quantum Electron. 19 1276

    [17]

    Szatmari S, Nagy T, Simon P, Feuerhake M 1996 Proceedings of the Ninth International Conference on Ultrafast Processes in Spectroscopy Plenum, New York, p621

    [18]

    Diels J C, Rudolph W 2006 Ultrashort Laser Pulse Phenomena (2nd Ed) (Elsevier Press) p185

    [19]

    Dubietis A, Valiulis G, Tamosauskas G, Danielius R, Piskarskas A 1997 Opt. Lett. 22 1071

    [20]

    DeSalvo R, Hagan D J, Sheik-Bahae M, Stegeman G, Van Stryland E W, Vanherzeele H 1992 Opt Lett. 17 28

    [21]

    Zhang Z G 2011 Femtosecond Laser technology (1st Ed) (Beijing: Science Press.) p7 (in Chinese) [张志刚 2011 飞秒激光技术(第一版) (北京: 科学出版社) 第7页]

    [22]

    Ashihara S, Nishina J, Shimura T, Kuroda K 2002 J. Opt. Soc. Am. B 19 2505

    [23]

    Hache F, Zeboulon A, Gallot G, Gale G M 1995 Opt. Lett. 20 1556

    [24]

    Albert O, Etchepare J 1998 Opt. Commu. 154 345

  • [1]

    Zhu Y, Chen X W, Leng Y X, Liu J, Lin L H, Li R X, Xu Z Z 2005 Chin. J. Lasers 32 1614 (in Chinese) [朱毅, 陈晓伟, 冷雨欣, 刘军, 林礼煌, 李儒新, 徐至展 2005 中国激光 32 1614]

    [2]

    Agrawal G P (Write), Jia D F, Yu Z H (Trans) 2010 Nonlinear Fiber Optics {& Application of Nonlinear Fiber Optic} (2nd Ed) (Beijing: Publishing House of Electronics Industry) p562 (in Chinese) [阿戈沃(著), 贾东方, 余震虹(译) 2010 非线性光纤光学原理及应用(第二版) (北京: 电子工业出版社) 第562页]

    [3]

    Jin Y X, Zhao Y A, Shao J D, Fan Z X, Liu S J, Ma J Y, Shen Z C, Kong W J, Shen J 2007 Acta Phy. Sin. 564542 (in Chinese) [晋云霞, 赵元安, 邵建达, 范正修, 刘世杰, 麻健勇, 沈自才, 孔伟金, 沈健 2007 物理学报 56 4542]

    [4]

    Hauri C P, Kornelis W, Helbing F W, Heinrich A, Couairon A, Mysyrowicz A, Bieger J, Keller U 2004 Appl. Phys. B 79 673

    [5]

    Mevel E, Tcherbakoff O, Salin E, Constant E 2003 J. Opt. Soc. Am. B 20 105

    [6]

    Xu F, Liu J S, Li R X, Xu Z Z 2007 Chin. Opt. Lett. 5 490

    [7]

    Guo L W, Zhou C H 2006 Opt. Commun. 257 180

    [8]

    Chen X W, Zhu Y, Liu J, Leng Y X, Ge X C, Li R X, Xu Z Z 2005 Acta Phy. Sin. 545178 (in Chinese) [陈晓伟, 朱毅, 刘军, 冷雨欣, 葛晓春, 李儒新, 徐至展 2005 物理学报 54 5178]

    [9]

    Liu X, Qian L J, Wise F 1999 Opt. Lett. 24 1777

    [10]

    Dubietis A, Valiulis G, Danielius R, Piskarskas A 1996 Opt. Lett. 21 1262

    [11]

    Liu H J, Chen G F, Zhao W, Wang Y S, Cheng Z 2003 Acta Optica Sinica 23 11 (in Chinese) [刘红军, 陈国夫, 赵卫, 王屹山, 程昭 2003 光学学报 23 11]

    [12]

    Wang K, Qian L J, Zhu H Y 2008 Chinese Science Bulletin 53 45 (in Chinese) [王科, 钱列, 朱鹤元 2008 科学通报 53 45]

    [13]

    Morten B, Wise F W 2010 Phys. Rev. A 81 053815

    [14]

    Sidick E, Knoesen A, Dienes A 1995 J. Opt. Soc. Am. B 12 1704

    [15]

    Sidick E, Knoesen A, Dienes A 1994 Opt. Lett. 19 266

    [16]

    Weiner A M 1983 IEEE J. Quantum Electron. 19 1276

    [17]

    Szatmari S, Nagy T, Simon P, Feuerhake M 1996 Proceedings of the Ninth International Conference on Ultrafast Processes in Spectroscopy Plenum, New York, p621

    [18]

    Diels J C, Rudolph W 2006 Ultrashort Laser Pulse Phenomena (2nd Ed) (Elsevier Press) p185

    [19]

    Dubietis A, Valiulis G, Tamosauskas G, Danielius R, Piskarskas A 1997 Opt. Lett. 22 1071

    [20]

    DeSalvo R, Hagan D J, Sheik-Bahae M, Stegeman G, Van Stryland E W, Vanherzeele H 1992 Opt Lett. 17 28

    [21]

    Zhang Z G 2011 Femtosecond Laser technology (1st Ed) (Beijing: Science Press.) p7 (in Chinese) [张志刚 2011 飞秒激光技术(第一版) (北京: 科学出版社) 第7页]

    [22]

    Ashihara S, Nishina J, Shimura T, Kuroda K 2002 J. Opt. Soc. Am. B 19 2505

    [23]

    Hache F, Zeboulon A, Gallot G, Gale G M 1995 Opt. Lett. 20 1556

    [24]

    Albert O, Etchepare J 1998 Opt. Commu. 154 345

  • [1] 薛挺, 于建, 杨天新, 倪文俊, 李世忱. 1.5μm波段基于级联二阶非线性的铌酸锂光波导全光波长变换的理论分析. 物理学报, 2002, 51(1): 91-98. doi: 10.7498/aps.51.91
    [2] 刘俭辉, 丁永奎, 谭莉, 胡智勇, 李世忱. 色散渐减光纤的脉冲压缩研究. 物理学报, 2004, 53(5): 1373-1377. doi: 10.7498/aps.53.1373
    [3] 宋振明, 庞冬青, 张志刚, 王清月. 超短光脉冲在分段中空光波导中的光谱展宽和脉冲压缩. 物理学报, 2005, 54(6): 2769-2773. doi: 10.7498/aps.54.2769
    [4] 郑狄, 潘炜. 非线性光纤环镜在受激布里渊散射慢光级联系统中的可行性研究. 物理学报, 2011, 60(6): 064210. doi: 10.7498/aps.60.064210
    [5] 马文文, 李曙光, 尹国冰, 冯荣普, 付博. 反常色散锥形微结构光纤中高效率脉冲压缩研究. 物理学报, 2010, 59(7): 4720-4725. doi: 10.7498/aps.59.4720
    [6] 胡摇, 王逍, 朱启华. 三类构型激光脉冲压缩器光栅拼接误差容限比较. 物理学报, 2011, 60(12): 124205. doi: 10.7498/aps.60.124205
    [7] 方进勇, 江伟华, 黄惠军, 张治强, 黄文华. 基于圆柱谐振腔的高功率微波脉冲压缩系统. 物理学报, 2011, 60(4): 048404. doi: 10.7498/aps.60.048404
    [8] 时雷, 马挺, 吴浩煜, 孙青, 马金栋, 路桥, 毛庆和. 基于耗散孤子种子的啁啾脉冲光纤放大系统输出特性. 物理学报, 2016, 65(8): 084203. doi: 10.7498/aps.65.084203
    [9] 张磊, 李金增. 水中受激布里渊散射脉冲的反常压缩. 物理学报, 2014, 63(5): 054202. doi: 10.7498/aps.63.054202
    [10] 陈晓伟, 朱 毅, 刘 军, 冷雨欣, 葛晓春, 李儒新, 徐至展. 飞秒激光脉冲在正色散固体材料中的自压缩. 物理学报, 2005, 54(11): 5178-5183. doi: 10.7498/aps.54.5178
    [11] 薛挺, 于建, 杨天新, 倪文俊, 李世忱. 周期性极化铌酸锂波导全光开关特性分析. 物理学报, 2002, 51(7): 1521-1529. doi: 10.7498/aps.51.1521
    [12] 李德荣, 吕晓华, 吴 萍, 骆清铭, 曾绍群, 陈 伟. 声光偏转器扫描飞秒激光的时间色散补偿. 物理学报, 2006, 55(9): 4729-4733. doi: 10.7498/aps.55.4729
    [13] 韩笑纯, 黄靖正, 方晨, 曾贵华. 群速度色散对于纠缠光场二阶关联函数影响的研究. 物理学报, 2015, 64(7): 070301. doi: 10.7498/aps.64.070301
    [14] 姜其畅, 刘超, 刘晋宏, 张俊香. 原子系统中远失谐脉冲光束对的群速度操控. 物理学报, 2015, 64(9): 094208. doi: 10.7498/aps.64.094208
    [15] 何林生, 江海河, 夏宇兴. 由前向四波混频产生脉冲压缩态光场. 物理学报, 1991, 40(10): 1613-1623. doi: 10.7498/aps.40.1613
    [16] 吴建伟, 夏光琼, 吴正茂. 基于半导体光放大器和非线性光纤环镜的光脉冲压缩器的设计模型和理论分析. 物理学报, 2004, 53(4): 1105-1109. doi: 10.7498/aps.53.1105
    [17] 胡 巍, 卢光山, 杨振军, 郭 弘, 刘承宜. 空间诱导群速度色散的数值研究. 物理学报, 2003, 52(3): 570-574. doi: 10.7498/aps.52.570
    [18] 刘雪明, 张明德, 孙小菡, 刘琳. 一种基于二阶非线性级联的新颖全光开关. 物理学报, 2001, 50(2): 287-292. doi: 10.7498/aps.50.287
    [19] 邓争志, 黄虎. 表面张力-重力短峰波作用的海底边界层速度二阶解. 物理学报, 2010, 59(2): 735-739. doi: 10.7498/aps.59.735
    [20] 马 晶, 章若冰, 张伟力, 王清月. 飞秒光参量放大中三波群速失配的补偿. 物理学报, 2005, 54(2): 755-762. doi: 10.7498/aps.54.755
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1096
  • PDF下载量:  515
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-11-20
  • 修回日期:  2012-12-30
  • 刊出日期:  2013-05-05

利用群速度匹配的级联二阶非线性实现超短激光脉冲压缩

  • 1. 四川大学电子信息学院, 成都 610064;
  • 2. 中国工程物理研究院, 绵阳 621900
    基金项目: 

    中国工程物理研究院重点实验室基金(批准号:9140C680301100C6806)与四川大学优秀青年学者科研基金资助的课题.

摘要: 提出了一种采用倾斜脉冲的级联二阶非线性来实现超短激光脉冲压缩的方法. 对基于单块BBO晶体中基频光与倍频光群速度匹配的级联二阶非线性的脉冲压缩方案进行了理论分析. 对比研究了群速度匹配与失配情况下利用级联二阶非线性进行脉冲压缩的效果, 并模拟分析了基频光与倍频光的位相失配量、非线性晶体长度、 基频光初始峰值光强和初始脉宽等因素对脉冲压缩效果的影响. 结果表明, 基频光与倍频光的群速度匹配将会大幅度改善压缩脉冲的时间波形和频谱分布. 通过对位相失配量、晶体长度、初始光强等参数的优化和选取可获得较理想的压缩效果. 采用倾斜脉冲的级联二阶非线性的脉宽压缩方法, 针对中心波长800 nm、脉宽100 fs, 峰值光强为50 GW/cm2的基频光脉冲, 采用25 mm厚BBO晶体, 当基频光与倍频光位相失配量Δk=60 mm-1(对应失谐角1.98°), 晶体外部脉冲前沿倾斜角γ0=74°时, 计算获得了质量较好的20 fs剩余基频光, 并同时产生了14 fs的倍频光.

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回