搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用聚碳酸酯模板制备的金纳米棒的表面增强Raman散射效应研究

叶通 高云 尹彦

利用聚碳酸酯模板制备的金纳米棒的表面增强Raman散射效应研究

叶通, 高云, 尹彦
PDF
导出引用
导出核心图
  • 采用聚碳酸酯模板和电化学沉积法制备基于金纳米棒的Raman场增强衬底, 制备的金纳米棒直径大约36 nm, 长约1 μm, 测试结果显示其共振吸收峰的位置约为540 nm. 比较了谐振和非谐振条件下的场增强情况, 并确定了场增益系数, 结果显示谐振激光激发下的增益比非谐振情况下提高了7.36倍. 本研究相对于前人的工作取得了如下进展: 一是讨论了谐振模式与非谐振模式下的金纳米棒的场增益系数, 利用谐振波长的激光激发金纳米棒, 进一步提高了场增益; 二是消除了聚碳酸酯模板分子的荧光背底, 使其在表面增强 Raman 散射方面的应用进一步变得可行.
    • 基金项目: 国家自然科学青年科学基金 (批准号:11004231)、中国科学院物理研究所人才启动项目和中国教育部留学回国人才科研启动基金资助的课题.
    [1]

    Wu G Z, Ma S G 1998 Chin. Phys. Lett. 15 753

    [2]

    Yin Y, Vamivakas A N, Walsh A G, Cronin S B, Ünl M S, Goldberg B B, Swan A K 2007 Phys. Rev. Lett. 98 037404

    [3]

    Yin Y, Walsh A G, Vamivakas A N, Cronin S B, Prober D E, Goldberg B B 2011 Phys. Rev. B 84 075428

    [4]

    Yin Y, Walsh A G, Vamivakas A N, Cronin S B, Stolyarov A, Tinkham M, Bacsa W, Ünl M S, Goldberg B B, Swan A K 2006 IEEE J. Sel. Top. Quant. Electron. 12 1083

    [5]

    Fleischmann M, Hendra P J, McQuillan A J 1974 Chem. Phys. Lett. 26 163

    [6]

    Jeanmaire D L, van Duyne R P 1977 J. Electroanal. Chem. 84 1

    [7]

    Albrecht M G, Creighton J A 1977 J. Am. Chem. Soc. 99 5215

    [8]

    Blackie E J, Le Ru E C, Etchegoin P G 2009 J. Am. Chem. Soc. 131 14466

    [9]

    Le Ru E C, Blackie E, Meyer M, Etchegoin P G 2007 J. Phys. Chem. C 111 13794

    [10]

    Kambhampati P, Child C M, Foster M C, Campion A 1998 J. Chem. Phys. 108 5013

    [11]

    Stiles P L, Dieringer J A, Shah N C, van Duyne R R 2008 Annu. Rev. Anal. Chem. 1 601

    [12]

    Campion A, Ivanecky III J E, Child C M, Foster M 1995 J. Am. Chem. Soc. 117 11807

    [13]

    Brolo A G, Arctander E, Gordon R, Leathem B, Kavanagh K L 2004 Nano Lett. 4 2015

    [14]

    Le Ru E C, Etchegoin P G, Grand J, Fe'lidj N, Aubard J, Le'vi G, Hohenau A, Krenn J R 2008 Curr. Appl. Phys. 8 467

    [15]

    Saute B, Premasiri R, Ziegler L, Narayanan R 2012 Analyst 137 5082

    [16]

    Zhang Q, Moran C H, Xia X H, Rycenga M, Li N X, Xia Y N 2012 Langmuir 28 9047

    [17]

    Zhang K, Liu J B, Hu X N, Xiang Y J, Feng L L, He W W, Hou S, Guo Y T, Ji Y L, Zhou W Y, Xie S S, Wu X C 2011 Physics 40 9 (in Chinese) [张 珂, 刘建波, 胡晓娜, 向彦娟, 冯莉莉, 何伟伟, 侯帅, 郭玉婷, 纪英露, 周维亚, 解思深, 吴晓春 2011物理 40 9]

    [18]

    Willets K A, Van Duyne R P 2007 Ann. Rev. Phys. Chem. 58 267

    [19]

    Kuncicky D M, Prevo B G, Velev O D 2006 J. Mater. Chem. 16 1207

    [20]

    Huang Z L, Meng G W, Huang Q, Chen B, Zhu C H, Zhang Z 2012 J. Raman Spectrosc. DOI 10.1002/jrs.4184

    [21]

    Alexander K D, Skinner K, Zhang S P, Wei H, Lopez R 2010 Nano Lett. 10 4488

    [22]

    Fukami K, Chourou M L, Miyagawa R, Noval Á M, Sakka T, Miguel M S, Raúl J M P, Ogata Y H 2011 Materials 4 791

    [23]

    Pereira F C, Bergamo E P, Zanoni M V B, Moretto L M, Ugo P 2006 Quim. Nova. 29 1054

    [24]

    Azariana A, Zada A I, Dolati A, Mahdavia S M 2009 Thin Solid Films 517 1736

    [25]

    Dangwal A, Pandey C S, Mller G, Karim S, Cornelius T W, Trautmann C 2008 Appl. Phys. Lett. 92 063115

    [26]

    Batista E A, Santos D P D, Andrade G F S, Sant'Ana A C, Brolo A G, Temperini M L A 2009 J. Nanosci. Nanotechnol. 9 3233

    [27]

    Gamby J, Rudolf A, Abid M, Girault H H, Tribollet C D B 2009 Lab. Chip. 9 1806

    [28]

    Apel P 2001 Radiat. Meas. 34 559

    [29]

    Schönenberger C, van der Zande B M I, Fokkink L G J, Henny M, Schmid C, Krger M, Bachtold A, Huber R, Birk H, Staufer U 1997 J. Phys. Chem. B 101 5497

    [30]

    Chlebny I, Doudin B, Ansermet J Ph 1993 Nanostruct. Mater. 2 637

    [31]

    Zhao Y, Jiang Y J, Fang Y 2006 Chem. Phys. 323 169

    [32]

    Khurana P, Thatai S, Wang P J, Lihitkar P, Zhang L S, Fang Y, Kulkarni S K 2012 Plasmonics DOI 10.1007/s11468-012-9374-0

    [33]

    Wang P J, Fang Y 2008 J. Chem. Phys. 129 134702

    [34]

    Tiwari N, Liu M Y, Kulkarni S K, Fang Y 2011 J. Nanophoton. 5 053513

  • [1]

    Wu G Z, Ma S G 1998 Chin. Phys. Lett. 15 753

    [2]

    Yin Y, Vamivakas A N, Walsh A G, Cronin S B, Ünl M S, Goldberg B B, Swan A K 2007 Phys. Rev. Lett. 98 037404

    [3]

    Yin Y, Walsh A G, Vamivakas A N, Cronin S B, Prober D E, Goldberg B B 2011 Phys. Rev. B 84 075428

    [4]

    Yin Y, Walsh A G, Vamivakas A N, Cronin S B, Stolyarov A, Tinkham M, Bacsa W, Ünl M S, Goldberg B B, Swan A K 2006 IEEE J. Sel. Top. Quant. Electron. 12 1083

    [5]

    Fleischmann M, Hendra P J, McQuillan A J 1974 Chem. Phys. Lett. 26 163

    [6]

    Jeanmaire D L, van Duyne R P 1977 J. Electroanal. Chem. 84 1

    [7]

    Albrecht M G, Creighton J A 1977 J. Am. Chem. Soc. 99 5215

    [8]

    Blackie E J, Le Ru E C, Etchegoin P G 2009 J. Am. Chem. Soc. 131 14466

    [9]

    Le Ru E C, Blackie E, Meyer M, Etchegoin P G 2007 J. Phys. Chem. C 111 13794

    [10]

    Kambhampati P, Child C M, Foster M C, Campion A 1998 J. Chem. Phys. 108 5013

    [11]

    Stiles P L, Dieringer J A, Shah N C, van Duyne R R 2008 Annu. Rev. Anal. Chem. 1 601

    [12]

    Campion A, Ivanecky III J E, Child C M, Foster M 1995 J. Am. Chem. Soc. 117 11807

    [13]

    Brolo A G, Arctander E, Gordon R, Leathem B, Kavanagh K L 2004 Nano Lett. 4 2015

    [14]

    Le Ru E C, Etchegoin P G, Grand J, Fe'lidj N, Aubard J, Le'vi G, Hohenau A, Krenn J R 2008 Curr. Appl. Phys. 8 467

    [15]

    Saute B, Premasiri R, Ziegler L, Narayanan R 2012 Analyst 137 5082

    [16]

    Zhang Q, Moran C H, Xia X H, Rycenga M, Li N X, Xia Y N 2012 Langmuir 28 9047

    [17]

    Zhang K, Liu J B, Hu X N, Xiang Y J, Feng L L, He W W, Hou S, Guo Y T, Ji Y L, Zhou W Y, Xie S S, Wu X C 2011 Physics 40 9 (in Chinese) [张 珂, 刘建波, 胡晓娜, 向彦娟, 冯莉莉, 何伟伟, 侯帅, 郭玉婷, 纪英露, 周维亚, 解思深, 吴晓春 2011物理 40 9]

    [18]

    Willets K A, Van Duyne R P 2007 Ann. Rev. Phys. Chem. 58 267

    [19]

    Kuncicky D M, Prevo B G, Velev O D 2006 J. Mater. Chem. 16 1207

    [20]

    Huang Z L, Meng G W, Huang Q, Chen B, Zhu C H, Zhang Z 2012 J. Raman Spectrosc. DOI 10.1002/jrs.4184

    [21]

    Alexander K D, Skinner K, Zhang S P, Wei H, Lopez R 2010 Nano Lett. 10 4488

    [22]

    Fukami K, Chourou M L, Miyagawa R, Noval Á M, Sakka T, Miguel M S, Raúl J M P, Ogata Y H 2011 Materials 4 791

    [23]

    Pereira F C, Bergamo E P, Zanoni M V B, Moretto L M, Ugo P 2006 Quim. Nova. 29 1054

    [24]

    Azariana A, Zada A I, Dolati A, Mahdavia S M 2009 Thin Solid Films 517 1736

    [25]

    Dangwal A, Pandey C S, Mller G, Karim S, Cornelius T W, Trautmann C 2008 Appl. Phys. Lett. 92 063115

    [26]

    Batista E A, Santos D P D, Andrade G F S, Sant'Ana A C, Brolo A G, Temperini M L A 2009 J. Nanosci. Nanotechnol. 9 3233

    [27]

    Gamby J, Rudolf A, Abid M, Girault H H, Tribollet C D B 2009 Lab. Chip. 9 1806

    [28]

    Apel P 2001 Radiat. Meas. 34 559

    [29]

    Schönenberger C, van der Zande B M I, Fokkink L G J, Henny M, Schmid C, Krger M, Bachtold A, Huber R, Birk H, Staufer U 1997 J. Phys. Chem. B 101 5497

    [30]

    Chlebny I, Doudin B, Ansermet J Ph 1993 Nanostruct. Mater. 2 637

    [31]

    Zhao Y, Jiang Y J, Fang Y 2006 Chem. Phys. 323 169

    [32]

    Khurana P, Thatai S, Wang P J, Lihitkar P, Zhang L S, Fang Y, Kulkarni S K 2012 Plasmonics DOI 10.1007/s11468-012-9374-0

    [33]

    Wang P J, Fang Y 2008 J. Chem. Phys. 129 134702

    [34]

    Tiwari N, Liu M Y, Kulkarni S K, Fang Y 2011 J. Nanophoton. 5 053513

  • [1] 黄茜, 张晓丹, 纪伟伟, 倪牮, 李林娜, 孙建, 耿卫东, 耿新华, 熊绍珍, 赵颖, 王京. Al2O3薄膜/纳米Ag颗粒复合结构的光吸收谱及增强Raman散射光谱研究. 物理学报, 2010, 59(4): 2753-2759. doi: 10.7498/aps.59.2753
    [2] 闫昭, 赵文静, 王荣瑶. 基于Logistic函数模型的纳米自组装动力学分析. 物理学报, 2016, 65(12): 126101. doi: 10.7498/aps.65.126101
    [3] 王向贤, 白雪琳, 庞志远, 杨华, 祁云平, 温晓镭. 聚甲基丙烯酸甲酯间隔的金纳米立方体与金膜复合结构的表面增强拉曼散射研究. 物理学报, 2019, 68(3): 037301. doi: 10.7498/aps.68.20190054
    [4] 孙友梅, 朱智勇, 王志光, 刘 杰, 张崇宏, 金运范. 热峰模型在聚碳酸酯非晶化潜径迹中的应用. 物理学报, 2005, 54(4): 1707-1710. doi: 10.7498/aps.54.1707
    [5] 白雄飞, 牛书通, 周旺, 王光义, 潘鹏, 方兴, 陈熙萌, 邵剑雄. 20 keV质子在聚碳酸酯微孔膜中传输的动态演化过程. 物理学报, 2017, 66(9): 093401. doi: 10.7498/aps.66.093401
    [6] 周旺, 牛书通, 闫学文, 白雄飞, 韩承志, 张鹛枭, 周利华, 杨爱香, 潘鹏, 邵剑雄, 陈熙萌. 100-keV质子在聚碳酸酯微孔膜中传输的动态演化过程. 物理学报, 2016, 65(10): 103401. doi: 10.7498/aps.65.103401
    [7] 牛书通, 潘鹏, 朱炳辉, 宋涵宇, 金屹磊, 禹楼飞, 韩承志, 邵剑雄, 陈熙萌. 30 keV H+在聚碳酸酯微孔膜中动态输运过程的实验和理论研究. 物理学报, 2018, 67(20): 203401. doi: 10.7498/aps.67.20181062
    [8] 牛书通, 周旺, 潘鹏, 朱炳辉, 宋涵宇, 邵剑雄, 陈熙萌. 30 keV He2+在不同倾斜角度的聚碳酸酯微孔膜中的传输过程. 物理学报, 2018, 67(17): 176102. doi: 10.7498/aps.67.20172484
    [9] 叶晓岚, 邓文杰, 梁二军. 卤酸根离子的近红外表面增强Raman散射. 物理学报, 1997, 46(11): 2130-2137. doi: 10.7498/aps.46.2130
    [10] 张然, 肖鑫泽, 吕超, 骆杨, 徐颖. 金纳米棒的飞秒激光组装研究. 物理学报, 2014, 63(1): 014206. doi: 10.7498/aps.63.014206
    [11] 黄运欢, 李璞. 金纳米棒复合体的消光特性. 物理学报, 2015, 64(20): 207301. doi: 10.7498/aps.64.207301
    [12] 丛超, 吴大建, 刘晓峻. 椭圆截面金纳米管近场增强特性的研究. 物理学报, 2012, 61(4): 047802. doi: 10.7498/aps.61.047802
    [13] 汤建, 刘爱萍, 李培刚, 沈静琴, 唐为华. 界面自组装的金/氧化石墨烯复合材料的表面增强拉曼散射行为研究. 物理学报, 2014, 63(10): 107801. doi: 10.7498/aps.63.107801
    [14] 程自强, 石海泉, 余萍, 刘志敏. 银纳米颗粒阵列的表面增强拉曼散射效应研究. 物理学报, 2018, 67(19): 197302. doi: 10.7498/aps.67.20180650
    [15] 黄茜, 曹丽冉, 孙建, 张晓丹, 耿卫东, 熊绍珍, 赵颖, 王京. 纳米Ag材料表面等离子体激元引起的表面增强拉曼散射光谱研究. 物理学报, 2009, 58(3): 1980-1986. doi: 10.7498/aps.58.1980
    [16] 马平平, 张杰, 刘焕焕, 张静, 徐永刚, 王江, 张梦桥, 李永放. 金纳米棒三聚体中的等离激元诱导透明. 物理学报, 2016, 65(21): 217801. doi: 10.7498/aps.65.217801
    [17] 何怡贞, 岳兰平. 纳米Ge颗粒镶嵌薄膜的Raman散射光谱研究. 物理学报, 1996, 45(10): 1756-1761. doi: 10.7498/aps.45.1756
    [18] 李 俊, 张凯旺, 孟利军, 刘文亮, 钟建新. 碳纳米管表面金纳米颗粒的形成与结构转变. 物理学报, 2008, 57(1): 382-386. doi: 10.7498/aps.57.382
    [19] 侯士敏, 陶成钢, 刘虹雯, 赵兴钰, 刘惟敏, 薛增泉. 高定向石墨表面金纳米粒子和金纳米线的研究. 物理学报, 2001, 50(2): 223-226. doi: 10.7498/aps.50.223
    [20] 郭亚楠, 薛文瑞, 张文梅. 双椭圆纳米金属棒构成的表面等离子体波导的传输特性分析. 物理学报, 2009, 58(6): 4168-4174. doi: 10.7498/aps.58.4168
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1665
  • PDF下载量:  984
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-01-24
  • 修回日期:  2013-02-27
  • 刊出日期:  2013-06-20

利用聚碳酸酯模板制备的金纳米棒的表面增强Raman散射效应研究

  • 1. 湖北大学物理学与电子技术学院, 武汉 430086;
  • 2. 中国科学院物理研究所, 光物理重点实验室, 北京 100190;
  • 3. 湖北大学材料科学与工程学院, 武汉 430086
    基金项目: 

    国家自然科学青年科学基金 (批准号:11004231)、中国科学院物理研究所人才启动项目和中国教育部留学回国人才科研启动基金资助的课题.

摘要: 采用聚碳酸酯模板和电化学沉积法制备基于金纳米棒的Raman场增强衬底, 制备的金纳米棒直径大约36 nm, 长约1 μm, 测试结果显示其共振吸收峰的位置约为540 nm. 比较了谐振和非谐振条件下的场增强情况, 并确定了场增益系数, 结果显示谐振激光激发下的增益比非谐振情况下提高了7.36倍. 本研究相对于前人的工作取得了如下进展: 一是讨论了谐振模式与非谐振模式下的金纳米棒的场增益系数, 利用谐振波长的激光激发金纳米棒, 进一步提高了场增益; 二是消除了聚碳酸酯模板分子的荧光背底, 使其在表面增强 Raman 散射方面的应用进一步变得可行.

English Abstract

参考文献 (34)

目录

    /

    返回文章
    返回