搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

两二能级原子在共同环境下的量子关联动力学

贺志 李龙武

两二能级原子在共同环境下的量子关联动力学

贺志, 李龙武
PDF
导出引用
导出核心图
  • 通过精确求解带有偶极-偶极相互作用的两个二能级原子与一个共同热库相互作用模型, 得到了两原子间量子纠缠和量子失谐(quantum discord)的解析表达式. 综合考虑了环境的非马尔可夫效应、原子间的偶极-偶极相互作用以及原子的本征频率同腔模中心频率之间的失谐量对两原子间量子纠缠和quantum discord的影响. 研究显示: 在非马尔可夫机制下, 且原子的本征频率与腔模中心频率是共振时, 当两原子初态处于纠缠态时, 原子间偶极-偶极相互作用可以显著抑制包括量子纠缠和quantum discord等量子关联的衰减, 更特别的是, 如果原子的本征频率同腔模中心频率有一定的失谐时, 利用原子间偶极-偶极相互作用可大大地延长两原子退纠缠的时间; 当两原子初态处于可分离态时, 从短时间来看, 原子间偶极-偶极相互作用可以提高量子纠缠和quantum discord振荡的振幅,而在长时间极限下, 原子间偶极-偶极相互作用不会改变量子纠缠和quantum discord达到的稳定值. 最后, 讨论了原子间偶极-偶极相互作用对量子纠缠和quantum discord动力学不同的影响.
    • 基金项目: 国家自然科学基金专项基金(批准号:11247294);湖南省教育厅一般项目(批准号:12C0826)和湖南文理学院博士启动基金(批准号:13101039)资助的课题.
    [1]

    Buluta I, Ashhab S, Nori F 2011 Rep. Prog. Phys. 74 104401

    [2]

    Yu T, Eberly J H 2004 Phys. Rev. Lett. 93 140404

    [3]

    Ficek Z, Tanaś R 2006 Phys. Rev. A 74 024304

    [4]

    Bellomo B, Lo Franco R, Compagno G 2007 Phys. Rev. Lett. 99 160502

    [5]

    Maniscalco S, Francica F, Zaffino R L, Gullo N L, Plastina F 2008 Phys. Rev. Lett. 100 090503

    [6]

    López C E, Romero G, Lastra F, Solano E, Retamal J C 2008 Phys. Rev. Lett. 101 080503

    [7]

    Zhang Y J, Man Z X, Xia Y J 2009 Eur. Phys. J. D 55 173

    [8]

    Wang X Y, Ding B F, Zhao H P 2012 Chin. Phys. B 22 040308

    [9]

    Cai C J, Fang M F, Xiao X, Huang J 2012 Acta Phys. Sin. 61 210303 (in Chinese) [蔡诚俊, 方卯发, 肖兴, 黄江 2012 物理学报 61 210303]

    [10]

    Chen L, Shao X Q, Zhang S 2009 Chin. Phys. B 18 188

    [11]

    Shan C J, Liu J B, Chen T, Liu T K, Huang Y X, Li H 2010 Acta Phys. Sin. 59 6799 (in Chinese) [单传家, 刘继兵, 陈涛, 刘堂昆, 黄燕霞, 李宏 2010 物理学报 59 6799]

    [12]

    Hu Y H, Tan Y G, Liu Q 2013 Acta Phys. Sin. 62 074202 (in Chinese) [胡要花, 谭勇刚, 刘强 2013 物理学报 62 074202]

    [13]

    Han W, Zhang Y J, Xia Y J 2011 Int. J. Quant. Inf. 9 1413

    [14]

    Han W, Cui W K, Zhang Y J, Xia Y J 2012 Acta Phys. Sin. 61 230302 (in Chinese) [韩伟, 崔文凯, 张英杰, 夏云杰 2012 物理学报 61 230302]

    [15]

    Han W, Zhang Y J, Xia Y J 2013 Chin. Phys. B 22 010306

    [16]

    Ollivier H, Zurek W H 2001 Phys. Rev. Lett. 88 017901

    [17]

    Henderson L, Vedral V 2001 J. Phys. A 34 6899

    [18]

    Datta A, Shaji A, Caves C M 2008 Phys. Rev. Lett. 100 050502

    [19]

    Lanyon B P, Barbieri M, Almeida M P, White A G 2008 Phys. Rev. Lett. 101 200501

    [20]

    Luo S 2008 Phys. Rev. A 77 042303

    [21]

    Werlang T, Souza S, Fanchini F F, Villas Boas C J 2009 Phys. Rev. A 80 024103

    [22]

    Mazzola L, Piilo J, Maniscalco S 2010 Phys. Rev. Lett. 104 200401

    [23]

    Breuer H P, Petruccione F 2002 The Theory of Open Quantum Systems (Oxford: Oxford University Press) p472

    [24]

    Wootters W K 1998 Phys. Rev. Lett. 80 2245

    [25]

    Peres A 1996 Phys. Rev. Lett. 77 1413

    [26]

    Yu T, Eberly J H 2007 Quantum Inf. Comput. 7 459

    [27]

    Ding B F, Wang X Y, Zhao H P 2011 Chin. Phys. B 20 100302

    [28]

    Ali M, Rau A R P, Alber G 2010 Phys. Rev. A 81 042105

    [29]

    Mazzola L, Maniscalco S, Piilo J, Suominen K A, Garraway B M 2009 Phys. Rev. A 79 042302

  • [1]

    Buluta I, Ashhab S, Nori F 2011 Rep. Prog. Phys. 74 104401

    [2]

    Yu T, Eberly J H 2004 Phys. Rev. Lett. 93 140404

    [3]

    Ficek Z, Tanaś R 2006 Phys. Rev. A 74 024304

    [4]

    Bellomo B, Lo Franco R, Compagno G 2007 Phys. Rev. Lett. 99 160502

    [5]

    Maniscalco S, Francica F, Zaffino R L, Gullo N L, Plastina F 2008 Phys. Rev. Lett. 100 090503

    [6]

    López C E, Romero G, Lastra F, Solano E, Retamal J C 2008 Phys. Rev. Lett. 101 080503

    [7]

    Zhang Y J, Man Z X, Xia Y J 2009 Eur. Phys. J. D 55 173

    [8]

    Wang X Y, Ding B F, Zhao H P 2012 Chin. Phys. B 22 040308

    [9]

    Cai C J, Fang M F, Xiao X, Huang J 2012 Acta Phys. Sin. 61 210303 (in Chinese) [蔡诚俊, 方卯发, 肖兴, 黄江 2012 物理学报 61 210303]

    [10]

    Chen L, Shao X Q, Zhang S 2009 Chin. Phys. B 18 188

    [11]

    Shan C J, Liu J B, Chen T, Liu T K, Huang Y X, Li H 2010 Acta Phys. Sin. 59 6799 (in Chinese) [单传家, 刘继兵, 陈涛, 刘堂昆, 黄燕霞, 李宏 2010 物理学报 59 6799]

    [12]

    Hu Y H, Tan Y G, Liu Q 2013 Acta Phys. Sin. 62 074202 (in Chinese) [胡要花, 谭勇刚, 刘强 2013 物理学报 62 074202]

    [13]

    Han W, Zhang Y J, Xia Y J 2011 Int. J. Quant. Inf. 9 1413

    [14]

    Han W, Cui W K, Zhang Y J, Xia Y J 2012 Acta Phys. Sin. 61 230302 (in Chinese) [韩伟, 崔文凯, 张英杰, 夏云杰 2012 物理学报 61 230302]

    [15]

    Han W, Zhang Y J, Xia Y J 2013 Chin. Phys. B 22 010306

    [16]

    Ollivier H, Zurek W H 2001 Phys. Rev. Lett. 88 017901

    [17]

    Henderson L, Vedral V 2001 J. Phys. A 34 6899

    [18]

    Datta A, Shaji A, Caves C M 2008 Phys. Rev. Lett. 100 050502

    [19]

    Lanyon B P, Barbieri M, Almeida M P, White A G 2008 Phys. Rev. Lett. 101 200501

    [20]

    Luo S 2008 Phys. Rev. A 77 042303

    [21]

    Werlang T, Souza S, Fanchini F F, Villas Boas C J 2009 Phys. Rev. A 80 024103

    [22]

    Mazzola L, Piilo J, Maniscalco S 2010 Phys. Rev. Lett. 104 200401

    [23]

    Breuer H P, Petruccione F 2002 The Theory of Open Quantum Systems (Oxford: Oxford University Press) p472

    [24]

    Wootters W K 1998 Phys. Rev. Lett. 80 2245

    [25]

    Peres A 1996 Phys. Rev. Lett. 77 1413

    [26]

    Yu T, Eberly J H 2007 Quantum Inf. Comput. 7 459

    [27]

    Ding B F, Wang X Y, Zhao H P 2011 Chin. Phys. B 20 100302

    [28]

    Ali M, Rau A R P, Alber G 2010 Phys. Rev. A 81 042105

    [29]

    Mazzola L, Maniscalco S, Piilo J, Suominen K A, Garraway B M 2009 Phys. Rev. A 79 042302

  • [1] 封玲娟, 夏云杰. 共同环境中三原子间纠缠演化特性研究. 物理学报, 2015, 64(1): 010302. doi: 10.7498/aps.64.010302
    [2] 程景, 单传家, 刘继兵, 黄燕霞, 刘堂昆. Tavis-Cummings模型中的几何量子失协特性. 物理学报, 2018, 67(11): 110301. doi: 10.7498/aps.67.20172699
    [3] 胡要花, 谭勇刚, 刘强. 强度相关耦合双Jaynes-Cummings模型中的纠缠和量子失谐. 物理学报, 2013, 62(7): 074202. doi: 10.7498/aps.62.074202
    [4] 单传家, 夏云杰. Tavis-Cummings模型中两纠缠原子纠缠的演化特性. 物理学报, 2006, 55(4): 1585-1590. doi: 10.7498/aps.55.1585
    [5] 张秦榕, 王彬彬, 张孟龙, 严冬. 稀薄里德伯原子气体中的两体纠缠. 物理学报, 2018, 67(3): 034202. doi: 10.7498/aps.67.20172052
    [6] 刘圣鑫, 李莎莎, 孔祥木. Dzyaloshinskii-Moriya相互作用对量子XY链中热纠缠的影响. 物理学报, 2011, 60(3): 030303. doi: 10.7498/aps.60.030303
    [7] 王成志, 方卯发. 双模压缩真空态与原子相互作用中的量子纠缠和退相干. 物理学报, 2002, 51(9): 1989-1995. doi: 10.7498/aps.51.1989
    [8] 丛美艳, 杨晶, 黄燕霞. 在不同初态下Dzyaloshinskii-Moriya相互作用及内禀退相干对海森伯系统的量子纠缠的影响. 物理学报, 2016, 65(17): 170301. doi: 10.7498/aps.65.170301
    [9] 陈宇, 邹健, 李军刚, 邵彬. 耗散环境下三原子之间稳定纠缠的量子反馈控制. 物理学报, 2010, 59(12): 8365-8370. doi: 10.7498/aps.59.8365
    [10] 陈爱民, 刘东昌, 段佳, 王洪雷, 相春环, 苏耀恒. 含有Dzyaloshinskii-Moriya相互作用的自旋1键交替海森伯模型的量子相变和拓扑序标度. 物理学报, 2020, 69(9): 090302. doi: 10.7498/aps.69.20191773
    [11] 杨 雄, 童朝阳, 匡乐满. 利用双光子过程实现量子信息转移. 物理学报, 2008, 57(3): 1689-1692. doi: 10.7498/aps.57.1689
    [12] 赵建辉, 王海涛. 应用多尺度纠缠重整化算法研究量子自旋系统的量子相变和基态纠缠. 物理学报, 2012, 61(21): 210502. doi: 10.7498/aps.61.210502
    [13] 周南润, 曾宾阳, 王立军, 龚黎华. 基于纠缠的选择自动重传量子同步通信协议. 物理学报, 2010, 59(4): 2193-2199. doi: 10.7498/aps.59.2193
    [14] 杨荣国, 张超霞, 李妮, 张静, 郜江瑞. 级联四波混频系统中纠缠增强的量子操控. 物理学报, 2019, 68(9): 094205. doi: 10.7498/aps.68.20181837
    [15] 王灿灿. 量子纠缠与宇宙学弗里德曼方程. 物理学报, 2018, 67(17): 179501. doi: 10.7498/aps.67.20180813
    [16] 李雪琴, 赵云芳, 唐艳妮, 杨卫军. 基于金刚石氮-空位色心自旋系综与超导量子电路混合系统的量子节点纠缠. 物理学报, 2018, 67(7): 070302. doi: 10.7498/aps.67.20172634
    [17] 胡要花, 方卯发, 廖湘萍, 郑小娟. 二项式光场与级联三能级原子的量子纠缠. 物理学报, 2006, 55(9): 4631-4637. doi: 10.7498/aps.55.4631
    [18] 苏耀恒, 陈爱民, 王洪雷, 相春环. 一维自旋1键交替XXZ链中的量子纠缠和临界指数. 物理学报, 2017, 66(12): 120301. doi: 10.7498/aps.66.120301
    [19] 夏建平, 任学藻, 丛红璐, 王旭文, 贺树. 两量子比特与谐振子相耦合系统中的量子纠缠演化特性. 物理学报, 2012, 61(1): 014208. doi: 10.7498/aps.61.014208
    [20] 安志云, 李志坚. 逾渗分立时间量子行走的传输及纠缠特性. 物理学报, 2017, 66(13): 130303. doi: 10.7498/aps.66.130303
  • 引用本文:
    Citation:
计量
  • 文章访问数:  947
  • PDF下载量:  583
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-04-14
  • 修回日期:  2013-06-17
  • 刊出日期:  2013-09-05

两二能级原子在共同环境下的量子关联动力学

  • 1. 湖南文理学院物理与电子科学学院, 常德 415000;
  • 2. 北京理工大学物理学院, 北京 100081
    基金项目: 

    国家自然科学基金专项基金(批准号:11247294)

    湖南省教育厅一般项目(批准号:12C0826)和湖南文理学院博士启动基金(批准号:13101039)资助的课题.

摘要: 通过精确求解带有偶极-偶极相互作用的两个二能级原子与一个共同热库相互作用模型, 得到了两原子间量子纠缠和量子失谐(quantum discord)的解析表达式. 综合考虑了环境的非马尔可夫效应、原子间的偶极-偶极相互作用以及原子的本征频率同腔模中心频率之间的失谐量对两原子间量子纠缠和quantum discord的影响. 研究显示: 在非马尔可夫机制下, 且原子的本征频率与腔模中心频率是共振时, 当两原子初态处于纠缠态时, 原子间偶极-偶极相互作用可以显著抑制包括量子纠缠和quantum discord等量子关联的衰减, 更特别的是, 如果原子的本征频率同腔模中心频率有一定的失谐时, 利用原子间偶极-偶极相互作用可大大地延长两原子退纠缠的时间; 当两原子初态处于可分离态时, 从短时间来看, 原子间偶极-偶极相互作用可以提高量子纠缠和quantum discord振荡的振幅,而在长时间极限下, 原子间偶极-偶极相互作用不会改变量子纠缠和quantum discord达到的稳定值. 最后, 讨论了原子间偶极-偶极相互作用对量子纠缠和quantum discord动力学不同的影响.

English Abstract

参考文献 (29)

目录

    /

    返回文章
    返回