搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ZnO纳米线薄膜的合成参数、表面形貌和接触角关系研究

景蔚萱 王兵 牛玲玲 齐含 蒋庄德 陈路加 周帆

ZnO纳米线薄膜的合成参数、表面形貌和接触角关系研究

景蔚萱, 王兵, 牛玲玲, 齐含, 蒋庄德, 陈路加, 周帆
PDF
导出引用
导出核心图
  • 水浴法合成ZnO纳米线薄膜的工艺参数直接影响其表面形貌, 并使其接触角及润湿性能发生变化. 本文仿真分析了轮廓算数平均偏差、偏斜度、峭度、相关长度等特征参数对随机粗糙表面特性的影响规律; 改变生长时间、种子层溶液和生长液的浓度, 批量制备了表面形貌不同的ZnO纳米线薄膜; 提出了取样长度的确定方法, 并基于扫描电镜图像和Matlab图像处理算子对ZnO纳米线薄膜表面形貌的特征参数进行了提取; 将表面形貌高度和水平方向的特征参数引入Wenzel模型, 分析了合成参数、表面形貌特征参数与接触角的影响关系. 结果表明, 合成参数变化时, 选择取样长度5.0 μm为宜; 生长液浓度大于0.125 mol/L时, ZnO纳米线之间发生重结晶, 并呈现疏水性; 改变种子层溶液浓度和生长时间, 均得到超亲水表面. 上述结论可用于不同氧化酶、细胞等在ZnO纳米线薄膜上的有效吸附及相应传感器测试性能的进一步提高.
    • 基金项目: 国家自然科学基金(批准号: 51075324, 90923001)、教育部科学研究重大项目 (批准号: 311001) 和长江学者和创新团队发展计划 (批准号: IRT1033) 资助的课题.
    [1]

    Dar G H, Umar A, Zaidi S A, Baskoutas S, Kim S H, Abaker M, Al-Hajry A, AL-Sayari S A 2011 Science of Advanced Materials 3 901

    [2]

    Zhao Z, Lei W, Zhang X, Wang B, Jiang H 2010 Sensors 10 1216

    [3]

    Li D Z, Zhu R 2013 Chin. Phys. B 22 018502

    [4]

    Wei A, Wang Z, Pan L H, Li W W, Xiong L, Dong X C, Huang W 2011 Chin. Phys. Lett. 28 080702

    [5]

    Chang S J, Weng W Y, Hsu C L, Hsueh T J 2010 Nano Communication Networks 1 283

    [6]

    Ciofani G, Genchi G G, Mattoli V 2012 Materials Science and Engineering C 32 341

    [7]

    Song Z M, Zhao D X, Guo Z, Li B H, Zhang Z Z, Shen D Z 2012 Acta Phys. Sin. 61 0252901 (in Chinese) [宋志明, 赵东旭, 郭振, 李炳辉, 张振中, 申德振 2012 物理学报 61 0252901]

    [8]

    Zheng Z K, Duanmu Q D, Zhao G X, Wang L D, Shen D Z 2012 Chin. Phys. Lett. 29 017804

    [9]

    Chen X M, Ji Y, Gao X Y, Zhao X W 2012 Chin. Phys. B 21 116801

    [10]

    Yang Y H, Li Z Y, Wang B, Wang C X, Chen D H, Yang G W 2005 J. Phys.: Condens. Matter 17 5441

    [11]

    Feng X J, Feng L, Jin M H, Zhai J, Jiang L, Zhu D B 2004 J. Am. Chem. Soc. 126 62

    [12]

    L J G, Huang K, Chen X M, Zhu J B, Meng F M, Song X P, Sun Z Q 2010 Applied Surface Science 256 4720

    [13]

    Gong M G, Xu X L, Yang Z, Liu Y S, Liu L 2010 Chin. Phys. B 19 056701

    [14]

    Reizer R 2010 Wear 271 539

    [15]

    Watson W, Spedding T A 1982 Wear 83 215

    [16]

    Hu Y Z, Tonder K 1992 Mach Tools Manufact 32 83

    [17]

    Wenzel R N 1936 Industrial and Engineering Chemistry 28 988

    [18]

    Cassie A B D, Baxter S 1944 Transactions of the Faraday Society 40 546

    [19]

    McHale G 2007 Langmuir 23 8200

    [20]

    Nosonovsky M, Bhushan B 2008 Langmuir 24 1525

    [21]

    Sun H, Zhang Q F, Wu J L 2006 Acta Phys. Sin. 56 3479 (in Chinese) [孙晖, 张琦锋, 吴锦雷 2006 物理学报 56 3479]

    [22]

    He Y, Jiang C Y, Yin H X, Chen J, Yuan W Z 2011 Journal of Colloid and Interface Science 364 219

    [23]

    Youssef S, Combette P, Podlecki J, Al-Asmar R, Foucaran A 2009 Cryst. Growth Des. 9 1088

    [24]

    Yan J F, You T G, Zhang Z Y, Tian J X, Yun J N, Zhao W 2012 Chin. Phys. B 21 098001

    [25]

    ISO 4287:1997, Geometrical Product Specifications (GPS)–Surface texture: Profile method–Terms, definitions and surface texture parameters

    [26]

    Nosonovsky M 2007 Langmuir 23 9919

  • [1]

    Dar G H, Umar A, Zaidi S A, Baskoutas S, Kim S H, Abaker M, Al-Hajry A, AL-Sayari S A 2011 Science of Advanced Materials 3 901

    [2]

    Zhao Z, Lei W, Zhang X, Wang B, Jiang H 2010 Sensors 10 1216

    [3]

    Li D Z, Zhu R 2013 Chin. Phys. B 22 018502

    [4]

    Wei A, Wang Z, Pan L H, Li W W, Xiong L, Dong X C, Huang W 2011 Chin. Phys. Lett. 28 080702

    [5]

    Chang S J, Weng W Y, Hsu C L, Hsueh T J 2010 Nano Communication Networks 1 283

    [6]

    Ciofani G, Genchi G G, Mattoli V 2012 Materials Science and Engineering C 32 341

    [7]

    Song Z M, Zhao D X, Guo Z, Li B H, Zhang Z Z, Shen D Z 2012 Acta Phys. Sin. 61 0252901 (in Chinese) [宋志明, 赵东旭, 郭振, 李炳辉, 张振中, 申德振 2012 物理学报 61 0252901]

    [8]

    Zheng Z K, Duanmu Q D, Zhao G X, Wang L D, Shen D Z 2012 Chin. Phys. Lett. 29 017804

    [9]

    Chen X M, Ji Y, Gao X Y, Zhao X W 2012 Chin. Phys. B 21 116801

    [10]

    Yang Y H, Li Z Y, Wang B, Wang C X, Chen D H, Yang G W 2005 J. Phys.: Condens. Matter 17 5441

    [11]

    Feng X J, Feng L, Jin M H, Zhai J, Jiang L, Zhu D B 2004 J. Am. Chem. Soc. 126 62

    [12]

    L J G, Huang K, Chen X M, Zhu J B, Meng F M, Song X P, Sun Z Q 2010 Applied Surface Science 256 4720

    [13]

    Gong M G, Xu X L, Yang Z, Liu Y S, Liu L 2010 Chin. Phys. B 19 056701

    [14]

    Reizer R 2010 Wear 271 539

    [15]

    Watson W, Spedding T A 1982 Wear 83 215

    [16]

    Hu Y Z, Tonder K 1992 Mach Tools Manufact 32 83

    [17]

    Wenzel R N 1936 Industrial and Engineering Chemistry 28 988

    [18]

    Cassie A B D, Baxter S 1944 Transactions of the Faraday Society 40 546

    [19]

    McHale G 2007 Langmuir 23 8200

    [20]

    Nosonovsky M, Bhushan B 2008 Langmuir 24 1525

    [21]

    Sun H, Zhang Q F, Wu J L 2006 Acta Phys. Sin. 56 3479 (in Chinese) [孙晖, 张琦锋, 吴锦雷 2006 物理学报 56 3479]

    [22]

    He Y, Jiang C Y, Yin H X, Chen J, Yuan W Z 2011 Journal of Colloid and Interface Science 364 219

    [23]

    Youssef S, Combette P, Podlecki J, Al-Asmar R, Foucaran A 2009 Cryst. Growth Des. 9 1088

    [24]

    Yan J F, You T G, Zhang Z Y, Tian J X, Yun J N, Zhao W 2012 Chin. Phys. B 21 098001

    [25]

    ISO 4287:1997, Geometrical Product Specifications (GPS)–Surface texture: Profile method–Terms, definitions and surface texture parameters

    [26]

    Nosonovsky M 2007 Langmuir 23 9919

  • [1] 王毅, 郭哲, 朱立达, 周红仙, 马振鹤. 基于谱域相位分辨光学相干层析的纳米级表面形貌成像. 物理学报, 2017, 66(15): 154202. doi: 10.7498/aps.66.154202
    [2] 顾春元, 狄勤丰, 施利毅, 吴 非, 王文昌, 余祖斌. 纳米粒子构建表面的超疏水性能实验研究. 物理学报, 2008, 57(5): 3071-3076. doi: 10.7498/aps.57.3071
    [3] 葛宋, 陈民. 接触角与液固界面热阻关系的分子动力学模拟. 物理学报, 2013, 62(11): 110204. doi: 10.7498/aps.62.110204
    [4] 叶学民, 李永康, 李春曦. 平衡接触角对受热液滴在水平壁面上铺展特性的影响. 物理学报, 2016, 65(10): 104704. doi: 10.7498/aps.65.104704
    [5] 夏伯丽, 张 云, 曹治觉. 论小接触角下实现滴状冷凝的可能性. 物理学报, 2003, 52(10): 2427-2431. doi: 10.7498/aps.52.2427
    [6] 宋志明, 赵东旭, 郭振, 李炳辉, 张振中, 申德振. ZnO纳米线紫外探测器的制备和快速响应性能的研究. 物理学报, 2012, 61(5): 052901. doi: 10.7498/aps.61.052901
    [7] 王艳新, 张琦锋, 孙 晖, 常艳玲, 吴锦雷. ZnO纳米线二极管发光器件制备及特性研究. 物理学报, 2008, 57(2): 1141-1144. doi: 10.7498/aps.57.1141
    [8] 乔双双, 杨 志, 张 威, 李梦轲, 魏 强, 曹 璐. ZnO纳米线场效应管的制备及I-V特性研究. 物理学报, 2008, 57(9): 5887-5892. doi: 10.7498/aps.57.5887
    [9] 孙 晖, 张琦锋, 吴锦雷. 基于氧化锌纳米线的紫外发光二极管. 物理学报, 2007, 56(6): 3479-3482. doi: 10.7498/aps.56.3479
    [10] 王奔, 念敬妍, 铁璐, 张亚斌, 郭志光. 稳定超疏水性表面的理论进展. 物理学报, 2013, 62(14): 146801. doi: 10.7498/aps.62.146801
    [11] 王文霞, 邱冰, 李华兵, 施娟. 用晶格玻尔兹曼方法研究微结构表面的疏水性能. 物理学报, 2010, 59(12): 8371-8376. doi: 10.7498/aps.59.8371
    [12] 王宇翔, 陈硕. 微粗糙结构表面液滴浸润特性的多体耗散粒子动力学研究. 物理学报, 2015, 64(5): 054701. doi: 10.7498/aps.64.054701
    [13] 林林, 袁儒强, 张欣欣, 王晓东. 液滴在梯度微结构表面上的铺展动力学分析. 物理学报, 2015, 64(15): 154705. doi: 10.7498/aps.64.154705
    [14] 乔小溪, 张向军, 陈平, 田煜, 孟永钢. 微矩形凹槽表面液滴各向异性浸润行为的研究. 物理学报, 2020, 69(3): 034702. doi: 10.7498/aps.69.20191429
    [15] 赵小龙, 康雪, 陈亮, 张忠兵, 刘金良, 欧阳晓平, 彭文博, 贺永宁. ZnO半导体电导型X射线探测器件研究. 物理学报, 2014, 63(9): 098502. doi: 10.7498/aps.63.098502
    [16] 孙成伟, 刘志文, 秦福文, 张庆瑜, 刘 琨, 吴世法. 生长温度对磁控溅射ZnO薄膜的结晶特性和光学性能的影响. 物理学报, 2006, 55(3): 1390-1397. doi: 10.7498/aps.55.1390
    [17] 谷建峰, 付伟佳, 刘 明, 刘志文, 马春雨, 张庆瑜. 电化学沉积高c轴取向ZnO薄膜及其光学性能分析. 物理学报, 2007, 56(10): 5979-5985. doi: 10.7498/aps.56.5979
    [18] 赵慧旭, 陈新亮, 杨旭, 杜建, 白立沙, 陈泽, 赵颖, 张晓丹. In2O3:Sn中间层改善B掺杂ZnO薄膜的性能及其应用研究. 物理学报, 2014, 63(5): 056801. doi: 10.7498/aps.63.056801
    [19] 郝广辉, 李泽鹏, 高玉娟, 周亚昆. 表面形貌对热阴极电子发射特性的影响. 物理学报, 2019, 68(3): 037901. doi: 10.7498/aps.68.20181725
    [20] 张丽卿, 张崇宏, 杨义涛, 姚存峰, 孙友梅, 李炳生, 赵志明, 宋书建. 高电荷态离子126Xeq+引起GaN表面形貌变化研究. 物理学报, 2009, 58(8): 5578-5584. doi: 10.7498/aps.58.5578
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1034
  • PDF下载量:  3146
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-06-19
  • 修回日期:  2013-07-26
  • 刊出日期:  2013-11-05

ZnO纳米线薄膜的合成参数、表面形貌和接触角关系研究

  • 1. 西安交通大学机械制造系统工程国家重点实验室, 西安 710049
    基金项目: 

    国家自然科学基金(批准号: 51075324, 90923001)、教育部科学研究重大项目 (批准号: 311001) 和长江学者和创新团队发展计划 (批准号: IRT1033) 资助的课题.

摘要: 水浴法合成ZnO纳米线薄膜的工艺参数直接影响其表面形貌, 并使其接触角及润湿性能发生变化. 本文仿真分析了轮廓算数平均偏差、偏斜度、峭度、相关长度等特征参数对随机粗糙表面特性的影响规律; 改变生长时间、种子层溶液和生长液的浓度, 批量制备了表面形貌不同的ZnO纳米线薄膜; 提出了取样长度的确定方法, 并基于扫描电镜图像和Matlab图像处理算子对ZnO纳米线薄膜表面形貌的特征参数进行了提取; 将表面形貌高度和水平方向的特征参数引入Wenzel模型, 分析了合成参数、表面形貌特征参数与接触角的影响关系. 结果表明, 合成参数变化时, 选择取样长度5.0 μm为宜; 生长液浓度大于0.125 mol/L时, ZnO纳米线之间发生重结晶, 并呈现疏水性; 改变种子层溶液浓度和生长时间, 均得到超亲水表面. 上述结论可用于不同氧化酶、细胞等在ZnO纳米线薄膜上的有效吸附及相应传感器测试性能的进一步提高.

English Abstract

参考文献 (26)

目录

    /

    返回文章
    返回