搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于谱域相位分辨光学相干层析的纳米级表面形貌成像

王毅 郭哲 朱立达 周红仙 马振鹤

基于谱域相位分辨光学相干层析的纳米级表面形貌成像

王毅, 郭哲, 朱立达, 周红仙, 马振鹤
PDF
导出引用
导出核心图
  • 提出了一种基于谱域相位分辨光学相干层析的纳米级表面形貌成像方法,由干涉光谱计算样品相邻两点的相位差,得到样品表面相位差分图,经过积分,重建样品表面形貌的定量分布.当相邻两点相位差的绝对值小于,不产生相位包裹,避免了目前的干涉法相位解包裹存在的问题,将干涉法相邻两点相位差绝对值的限制条件由目前的扩大到2,提高了干涉法表面形貌成像的适用范围.参考面和样品置于同一平台之上,消除环境干扰及系统振动的影响,噪声幅度小于0.3 nm.通过对光学分辨率片及表面粗糙度标准样板的表面形貌成像,对本方法进行了验证,系统的轴向分辨率优于1 nm.
      通信作者: 王毅, wangyi@neuq.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61275214,31170956)和河北省自然科学基金(批准号:A2015501065,H2015501133)资助的课题.
    [1]

    Thomas T R 2013 Sur. Topogr. Metrol. Prop. 2 014001

    [2]

    Heintze S D, Forjanic M, Rousson V 2006 Dent. Mater. 22 146

    [3]

    Song R L, Liu P, Zhang K, Liu X K, Chen X H 2016 Chin. J. Mater. Res. 30 255 (in Chinese) [宋瑞利, 刘平, 张柯, 刘新宽, 陈小红 2016 材料研究学报 30 255]

    [4]

    Leyva-Mendivil M F, Lengiewicz J, Page A, Bressloff N W, Limbert G 2017 Tribol. Lett. 65 12

    [5]

    Wang J D, Chen D R, Kong X M 2003 Tribology 23 52 (in Chinese) [汪家道, 陈大融, 孔宪梅 2003 摩擦学学报 23 52]

    [6]

    Groot P D 2015 Adv. Opt. Photon. 7 1

    [7]

    Bruzzone A A G, Costa H L, Lonardo P M, Lucca D A 2008 CIRP Annals-Manufact. Technol. 57 750

    [8]

    Leach R K, Giusca C L, Naoi K 2009 Measur. Sci. Technol. 20 125102

    [9]

    Wang D, He C, Stoykovich M P, Schwartz D K 2015 ACS Nano 9 1656

    [10]

    Guenther K H, Wierer P G, Bennett J M 1984 Appl. Opt. 23 3820

    [11]

    Labella V P, Ding Z, Bullock D W, Emery C, Thibado P M 2000 J. Vacuum Sci. Technol. A 18 1492

    [12]

    Schouteden K, Lauwaet K, Janssens E, Barcaro G, Fortunelli A, van Haesendonck C 2014 Nanoscale 6 2170

    [13]

    Ando T, Uchihashi T, Scheuring S 2014 Chem. Rev. 114 3120

    [14]

    Butt H J, Cappella B, Kappl M 2005 Surf. Sci. Rep. 59 1

    [15]

    Duque D, Garzn J 2013 Opt. Laser Technol. 50 182

    [16]

    Shi K, Li P, Yin S, Liu Z 2004 Opt. Express 12 2096

    [17]

    Cai H, Guangyao L I, Huang Z 2016 Laser Technol. 40 20 (in Chinese) [蔡怀宇, 李光耀, 黄战华 2016 激光技术 40 20]

    [18]

    Lehmann P, Khnhold P, Xie W 2014 Measur. Sci. Technol. 25 065203

    [19]

    Liu C, Chen L, Wang J, Han Z G, Shi L L 2011 Opto-electronic Eng. 38 71

    [20]

    Lin H, Li Y, Wang D, Tong X, Liu M 2009 Appl. Opt. 48 1502

    [21]

    Zhou Z F, Zhang T, Zhou W D, Li W J 2001 Opto-electronic Eng. 28 7 (in Chinese) [周肇飞, 张涛, 周卫东, 李文杰 2001 光电工程 28 7]

    [22]

    Liu S, Yang L X 2007 Opt. Eng. 46 051012

    [23]

    Goldstein G, Creath K 2015 Appl. Opt. 54 5175

    [24]

    Huang D, Swanson E A, Lin C P, Schuman J S, Stinson W G, Chang W 1991 Science 254 1178

    [25]

    Wang R K, An L 2009 Opt. Express 17 8926

    [26]

    Ortiz S, Siedlecki D, Remon L, Marcos S 2009 Appl. Opt. 48 6708

    [27]

    Ortiz S, Siedlecki D, Prezmerino P, Chia N, Castro A D, Szkulmowski M 2011 Biomed. Opt. Express 2 3232

    [28]

    Sun M, Birkenfeld J, Castro A D, Ortiz S, Marcos S 2014 Biomed. Opt. Express 5 3547

    [29]

    Xue P, Fujimoto J G 2008 Sci. Bull. 53 1963

    [30]

    Povazay B, Bizheva K, Unterhuber A, Hermann B, Sattmann H, Fercher A F, Drexler W, Apolonski A, Wadsworth W J, Knight J C, Russell P S, Vetterlein M, Scherzer E 2002 Opt. Lett. 27 1800

    [31]

    Tang T, Zhao C, Chen Z Y, Li P, Ding Z H 2015 Acta Phys. Sin. 64 174201 (in Chinese) [唐弢, 赵晨, 陈志彦, 李鹏, 丁志华 2015 物理学报 64 174201]

    [32]

    Ma Z, He Z, Wang S, Wang Y, Li M, Wang Q, Wang F 2012 Opt. Eng. 51 063203

    [33]

    Tomlins P H, Wang R K 2005 J. Phys. D: Appl. Phys. 38 2519

  • [1]

    Thomas T R 2013 Sur. Topogr. Metrol. Prop. 2 014001

    [2]

    Heintze S D, Forjanic M, Rousson V 2006 Dent. Mater. 22 146

    [3]

    Song R L, Liu P, Zhang K, Liu X K, Chen X H 2016 Chin. J. Mater. Res. 30 255 (in Chinese) [宋瑞利, 刘平, 张柯, 刘新宽, 陈小红 2016 材料研究学报 30 255]

    [4]

    Leyva-Mendivil M F, Lengiewicz J, Page A, Bressloff N W, Limbert G 2017 Tribol. Lett. 65 12

    [5]

    Wang J D, Chen D R, Kong X M 2003 Tribology 23 52 (in Chinese) [汪家道, 陈大融, 孔宪梅 2003 摩擦学学报 23 52]

    [6]

    Groot P D 2015 Adv. Opt. Photon. 7 1

    [7]

    Bruzzone A A G, Costa H L, Lonardo P M, Lucca D A 2008 CIRP Annals-Manufact. Technol. 57 750

    [8]

    Leach R K, Giusca C L, Naoi K 2009 Measur. Sci. Technol. 20 125102

    [9]

    Wang D, He C, Stoykovich M P, Schwartz D K 2015 ACS Nano 9 1656

    [10]

    Guenther K H, Wierer P G, Bennett J M 1984 Appl. Opt. 23 3820

    [11]

    Labella V P, Ding Z, Bullock D W, Emery C, Thibado P M 2000 J. Vacuum Sci. Technol. A 18 1492

    [12]

    Schouteden K, Lauwaet K, Janssens E, Barcaro G, Fortunelli A, van Haesendonck C 2014 Nanoscale 6 2170

    [13]

    Ando T, Uchihashi T, Scheuring S 2014 Chem. Rev. 114 3120

    [14]

    Butt H J, Cappella B, Kappl M 2005 Surf. Sci. Rep. 59 1

    [15]

    Duque D, Garzn J 2013 Opt. Laser Technol. 50 182

    [16]

    Shi K, Li P, Yin S, Liu Z 2004 Opt. Express 12 2096

    [17]

    Cai H, Guangyao L I, Huang Z 2016 Laser Technol. 40 20 (in Chinese) [蔡怀宇, 李光耀, 黄战华 2016 激光技术 40 20]

    [18]

    Lehmann P, Khnhold P, Xie W 2014 Measur. Sci. Technol. 25 065203

    [19]

    Liu C, Chen L, Wang J, Han Z G, Shi L L 2011 Opto-electronic Eng. 38 71

    [20]

    Lin H, Li Y, Wang D, Tong X, Liu M 2009 Appl. Opt. 48 1502

    [21]

    Zhou Z F, Zhang T, Zhou W D, Li W J 2001 Opto-electronic Eng. 28 7 (in Chinese) [周肇飞, 张涛, 周卫东, 李文杰 2001 光电工程 28 7]

    [22]

    Liu S, Yang L X 2007 Opt. Eng. 46 051012

    [23]

    Goldstein G, Creath K 2015 Appl. Opt. 54 5175

    [24]

    Huang D, Swanson E A, Lin C P, Schuman J S, Stinson W G, Chang W 1991 Science 254 1178

    [25]

    Wang R K, An L 2009 Opt. Express 17 8926

    [26]

    Ortiz S, Siedlecki D, Remon L, Marcos S 2009 Appl. Opt. 48 6708

    [27]

    Ortiz S, Siedlecki D, Prezmerino P, Chia N, Castro A D, Szkulmowski M 2011 Biomed. Opt. Express 2 3232

    [28]

    Sun M, Birkenfeld J, Castro A D, Ortiz S, Marcos S 2014 Biomed. Opt. Express 5 3547

    [29]

    Xue P, Fujimoto J G 2008 Sci. Bull. 53 1963

    [30]

    Povazay B, Bizheva K, Unterhuber A, Hermann B, Sattmann H, Fercher A F, Drexler W, Apolonski A, Wadsworth W J, Knight J C, Russell P S, Vetterlein M, Scherzer E 2002 Opt. Lett. 27 1800

    [31]

    Tang T, Zhao C, Chen Z Y, Li P, Ding Z H 2015 Acta Phys. Sin. 64 174201 (in Chinese) [唐弢, 赵晨, 陈志彦, 李鹏, 丁志华 2015 物理学报 64 174201]

    [32]

    Ma Z, He Z, Wang S, Wang Y, Li M, Wang Q, Wang F 2012 Opt. Eng. 51 063203

    [33]

    Tomlins P H, Wang R K 2005 J. Phys. D: Appl. Phys. 38 2519

  • [1] 狄国庆. 溅射制备Ta2O5薄膜的表面形貌与光学特性. 物理学报, 2011, 60(3): 038101. doi: 10.7498/aps.60.038101
    [2] 王凯, 曾焱, 丁志华, 孟婕, 史国华, 张雨东. 谱域光学相干层析系统中基于解卷积方法的像质优化. 物理学报, 2010, 59(4): 2471-2478. doi: 10.7498/aps.59.2471
    [3] 孙成伟, 刘志文, 秦福文, 张庆瑜, 刘 琨, 吴世法. 生长温度对磁控溅射ZnO薄膜的结晶特性和光学性能的影响. 物理学报, 2006, 55(3): 1390-1397. doi: 10.7498/aps.55.1390
    [4] 谷建峰, 付伟佳, 刘 明, 刘志文, 马春雨, 张庆瑜. 电化学沉积高c轴取向ZnO薄膜及其光学性能分析. 物理学报, 2007, 56(10): 5979-5985. doi: 10.7498/aps.56.5979
    [5] 于天燕, 秦杨, 刘定权, 张凤山. SrF2-CaF2混合物薄膜的物理及红外光学特性研究. 物理学报, 2010, 59(4): 2546-2550. doi: 10.7498/aps.59.2546
    [6] 于天燕, 秦杨, 刘定权. 沉积温度对硫化锌(ZnS)薄膜的结晶和光学特性影响研究. 物理学报, 2013, 62(21): 214211. doi: 10.7498/aps.62.214211
    [7] 郝广辉, 李泽鹏, 高玉娟, 周亚昆. 表面形貌对热阴极电子发射特性的影响. 物理学报, 2019, 68(3): 037901. doi: 10.7498/aps.68.20181725
    [8] 张丽卿, 张崇宏, 杨义涛, 姚存峰, 孙友梅, 李炳生, 赵志明, 宋书建. 高电荷态离子126Xeq+引起GaN表面形貌变化研究. 物理学报, 2009, 58(8): 5578-5584. doi: 10.7498/aps.58.5578
    [9] 梁静秋, 梁中翥, 朱万彬, 苏法刚. 光辐射吸收材料表面形貌与吸收率关系研究. 物理学报, 2011, 60(5): 057802. doi: 10.7498/aps.60.057802
    [10] 彭述明, 申华海, 龙兴贵, 周晓松, 杨莉, 祖小涛. 氘化及氦离子注入对钪膜的表面形貌和相结构的影响. 物理学报, 2012, 61(17): 176106. doi: 10.7498/aps.61.176106
    [11] 景蔚萱, 王兵, 牛玲玲, 齐含, 蒋庄德, 陈路加, 周帆. ZnO纳米线薄膜的合成参数、表面形貌和接触角关系研究. 物理学报, 2013, 62(21): 218102. doi: 10.7498/aps.62.218102
    [12] 周勋, 罗子江, 王继红, 郭祥, 丁召. 低As压退火对GaAs(001)表面形貌与重构的影响. 物理学报, 2015, 64(21): 216803. doi: 10.7498/aps.64.216803
    [13] 喻晓, 沈杰, 钟昊玟, 张洁, 张高龙, 张小富, 颜莎, 乐小云. 强脉冲电子束辐照材料表面形貌演化的模拟. 物理学报, 2015, 64(21): 216102. doi: 10.7498/aps.64.216102
    [14] 陶海岩, 陈锐, 宋晓伟, 陈亚楠, 林景全. 飞秒激光脉冲能量累积优化对黑硅表面形貌的影响. 物理学报, 2017, 66(6): 067902. doi: 10.7498/aps.66.067902
    [15] 潘宵, 鞠焕鑫, 冯雪飞, 范其瑭, 王嘉兴, 杨耀文, 朱俊发. F8BT薄膜表面形貌及与Al形成界面的电子结构和反应. 物理学报, 2015, 64(7): 077304. doi: 10.7498/aps.64.077304
    [16] 白宣羽, 徐可为, 汪 渊. 基于小波变换Cu-W薄膜表面形貌表征与硬度值分散性评价. 物理学报, 2004, 53(7): 2281-2286. doi: 10.7498/aps.53.2281
    [17] 江洋, 罗毅, 席光义, 汪莱, 李洪涛, 赵维, 韩彦军. AlGaN插入层对6H-SiC上金属有机物气相外延生长的GaN薄膜残余应力及表面形貌的影响. 物理学报, 2009, 58(10): 7282-7287. doi: 10.7498/aps.58.7282
    [18] 廖梅勇, 秦复光, 柴春林, 刘志凯, 杨少延, 姚振钰, 王占国. 离子能量和沉积温度对离子束沉积碳膜表面形貌的影响. 物理学报, 2001, 50(7): 1324-1328. doi: 10.7498/aps.50.1324
    [19] 曹月华, 狄国庆. 磁控溅射制备Y2O3-TiO2薄膜形貌的研究. 物理学报, 2011, 60(3): 037702. doi: 10.7498/aps.60.037702
    [20] 杨吉军, 徐可为. 生长初期Ta膜的表面动态演化行为. 物理学报, 2007, 56(10): 6023-6027. doi: 10.7498/aps.56.6023
  • 引用本文:
    Citation:
计量
  • 文章访问数:  469
  • PDF下载量:  126
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-22
  • 修回日期:  2017-04-23
  • 刊出日期:  2017-08-05

基于谱域相位分辨光学相干层析的纳米级表面形貌成像

  • 1. 东北大学秦皇岛分校控制工程学院, 秦皇岛 066004;
  • 2. 燕山大学电气工程学院, 秦皇岛 066004
  • 通信作者: 王毅, wangyi@neuq.edu.cn
    基金项目: 

    国家自然科学基金(批准号:61275214,31170956)和河北省自然科学基金(批准号:A2015501065,H2015501133)资助的课题.

摘要: 提出了一种基于谱域相位分辨光学相干层析的纳米级表面形貌成像方法,由干涉光谱计算样品相邻两点的相位差,得到样品表面相位差分图,经过积分,重建样品表面形貌的定量分布.当相邻两点相位差的绝对值小于,不产生相位包裹,避免了目前的干涉法相位解包裹存在的问题,将干涉法相邻两点相位差绝对值的限制条件由目前的扩大到2,提高了干涉法表面形貌成像的适用范围.参考面和样品置于同一平台之上,消除环境干扰及系统振动的影响,噪声幅度小于0.3 nm.通过对光学分辨率片及表面粗糙度标准样板的表面形貌成像,对本方法进行了验证,系统的轴向分辨率优于1 nm.

English Abstract

参考文献 (33)

目录

    /

    返回文章
    返回