搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含定向非均匀体固体材料的横观各向同性有效弹性模量

宋永佳 胡恒山

含定向非均匀体固体材料的横观各向同性有效弹性模量

宋永佳, 胡恒山
PDF
导出引用
导出核心图
  • 针对非均匀体定向指向的情况,将非均匀体对弹性波的散射等效为球形有效体对弹性波的散射,推导出了呈现横观各向同性的有效弹性模量. 理论分析表明:本文得到的有效模量公式至少具有二阶精度. 数值计算表明:本文的有效模量随孔隙度增加而降低,不会出现Hudson模型中在孔隙度超过一定阈值后不减反增的问题. 另外,在非均匀体指向随机的情况,本文得到的有效模量公式归结为Kuster-Toksöz模型的公式. 对于由扁状裂隙作为非均匀体的孔隙岩石,裂隙内液体主要影响横观各向同性对称轴方向的纵波模量.
    • 基金项目: 国家自然科学基金(批准号:41174110,11372091)资助的课题.
    [1]

    Du S, Wang B 1998 Micromechanics of composites (Beijing: Science Press) p5–8 [杜善义, 王彪 1998 复合材料细观力学 (北京: 科学出版社) 第5–8页]

    [2]

    Mavko G, Mukerji T, Dvorkin J 2009 The rock physics handbook second edition (Cambridge: Cambridge University Press) pp183–205

    [3]

    Thomsen L 1986 Geophysics 51 1954

    [4]

    He X, Hu H 2009 Geophysics 74 E149

    [5]

    Tang X 2011 Sci. China Earth Sci. 41 784 (in Chinese) [唐晓明 2011 中国科学: 地球科学 41 784]

    [6]

    Liu E, Chapman M, Zhang Z, Queen J H 2006 Wave Motion 44 44

    [7]

    Gurevich B, Makarynska D, Pervukhina M 2009 Geophysics 74 N25

    [8]

    Song Y, Hu H 2013 Chinese Journal of Theoretical and Applied Mechanics 45 395 (in Chinese) [宋永佳, 胡恒山 2013 力学学报 45 395]

    [9]

    Eshelby J D 1957 Proc. R. Soc. London, Ser. A 241 376

    [10]

    Eshelby J D 1959 Proc. R. Soc. London, Ser. A 252 561

    [11]

    O’Connell R J, Budiansky B 1974 J. Geophys. Res. 79 5412

    [12]

    Berryman J G, Berge P A 1996 Mechanics of Materials 22 149

    [13]

    Bruner W M 1976 J. Geophys. Res. 81 2573

    [14]

    Sun Z, Garboczi E J, Shah S P 2007 Cement and Concrete Composites 29 22

    [15]

    Kuster G T, Toksö z M N 1974 Geophysics 39 587

    [16]

    Cheng C H 1993 J. Geophys. Res. 98 675

    [17]

    Hudson J A 1994 Geophys. J. Int. 117 555

    [18]

    Chapman M 2003 Geophysical Prospecting 51 369

    [19]

    Jakobsen M, Hudson J A, Johansen T A 2003 Geophys. J. Int. 154 533

    [20]

    Kong L Y, Wang Y B, Yang H Z2013 Acta Phys. Sin. 62 139101 (in Chinese) [孔丽云, 王一博, 杨慧珠 2013 物理学报 62 139101]

    [21]

    Shen Wei, Fan Qun-Bo, Wang Fu-Chi, Ma Zhuang 2013 Chin. Phys. B 22 044601

    [22]

    Mal A K, Knopoff L 1967 J. Inst. Math. Appl. 3 376

    [23]

    Miles J W 1960 Geophysics 25 642

    [24]

    Wu T T 1966 Int. J. Solids Structures 2 1

    [25]

    Qu J, Cherkaoui M 2006 Fundamentals of micromechanics of solids (New Jersey: John Wiley & Sons, Inc.) pp87

    [26]

    Mura T 1987 Micromechanics of defects in solids (Dordrecht: Martinus Nijhoff Publishers) pp79

    [27]

    David E C, Zimmerman R W 2011 Int. J. Solids Structures 48 680

    [28]

    Auld B A 1973 Acoustic fields and waves in solids (New York: John Wiley & Sons, Inc.) pp211–212

    [29]

    Hill R 1963 J. Mech. Phys. Solids 11 357

    [30]

    Berryman J G 1979 Appl. Phys. Lett. 35 856

  • [1]

    Du S, Wang B 1998 Micromechanics of composites (Beijing: Science Press) p5–8 [杜善义, 王彪 1998 复合材料细观力学 (北京: 科学出版社) 第5–8页]

    [2]

    Mavko G, Mukerji T, Dvorkin J 2009 The rock physics handbook second edition (Cambridge: Cambridge University Press) pp183–205

    [3]

    Thomsen L 1986 Geophysics 51 1954

    [4]

    He X, Hu H 2009 Geophysics 74 E149

    [5]

    Tang X 2011 Sci. China Earth Sci. 41 784 (in Chinese) [唐晓明 2011 中国科学: 地球科学 41 784]

    [6]

    Liu E, Chapman M, Zhang Z, Queen J H 2006 Wave Motion 44 44

    [7]

    Gurevich B, Makarynska D, Pervukhina M 2009 Geophysics 74 N25

    [8]

    Song Y, Hu H 2013 Chinese Journal of Theoretical and Applied Mechanics 45 395 (in Chinese) [宋永佳, 胡恒山 2013 力学学报 45 395]

    [9]

    Eshelby J D 1957 Proc. R. Soc. London, Ser. A 241 376

    [10]

    Eshelby J D 1959 Proc. R. Soc. London, Ser. A 252 561

    [11]

    O’Connell R J, Budiansky B 1974 J. Geophys. Res. 79 5412

    [12]

    Berryman J G, Berge P A 1996 Mechanics of Materials 22 149

    [13]

    Bruner W M 1976 J. Geophys. Res. 81 2573

    [14]

    Sun Z, Garboczi E J, Shah S P 2007 Cement and Concrete Composites 29 22

    [15]

    Kuster G T, Toksö z M N 1974 Geophysics 39 587

    [16]

    Cheng C H 1993 J. Geophys. Res. 98 675

    [17]

    Hudson J A 1994 Geophys. J. Int. 117 555

    [18]

    Chapman M 2003 Geophysical Prospecting 51 369

    [19]

    Jakobsen M, Hudson J A, Johansen T A 2003 Geophys. J. Int. 154 533

    [20]

    Kong L Y, Wang Y B, Yang H Z2013 Acta Phys. Sin. 62 139101 (in Chinese) [孔丽云, 王一博, 杨慧珠 2013 物理学报 62 139101]

    [21]

    Shen Wei, Fan Qun-Bo, Wang Fu-Chi, Ma Zhuang 2013 Chin. Phys. B 22 044601

    [22]

    Mal A K, Knopoff L 1967 J. Inst. Math. Appl. 3 376

    [23]

    Miles J W 1960 Geophysics 25 642

    [24]

    Wu T T 1966 Int. J. Solids Structures 2 1

    [25]

    Qu J, Cherkaoui M 2006 Fundamentals of micromechanics of solids (New Jersey: John Wiley & Sons, Inc.) pp87

    [26]

    Mura T 1987 Micromechanics of defects in solids (Dordrecht: Martinus Nijhoff Publishers) pp79

    [27]

    David E C, Zimmerman R W 2011 Int. J. Solids Structures 48 680

    [28]

    Auld B A 1973 Acoustic fields and waves in solids (New York: John Wiley & Sons, Inc.) pp211–212

    [29]

    Hill R 1963 J. Mech. Phys. Solids 11 357

    [30]

    Berryman J G 1979 Appl. Phys. Lett. 35 856

  • [1] 王婷, 崔志文, 刘金霞, 王克协. 含少量气泡流体饱和孔隙介质中的弹性波. 物理学报, 2018, 67(11): 114301. doi: 10.7498/aps.67.20180209
    [2] 崔志文, 刘金霞, 王春霞, 王克协. 基于Biot-喷射流统一模型Maxwell流体饱和孔隙介质中的弹性波. 物理学报, 2010, 59(12): 8655-8661. doi: 10.7498/aps.59.8655
    [3] 苏娜娜, 韩庆邦, 蒋謇. 无限流体中孔隙介质圆柱周向导波的传播特性. 物理学报, 2019, 68(8): 084301. doi: 10.7498/aps.68.20182300
    [4] 胡恒山. 孔隙地层井壁上的声波首波及其诱导电磁场的原因. 物理学报, 2003, 52(8): 1954-1959. doi: 10.7498/aps.52.1954
    [5] 许松, 唐晓明, 苏远大. 横向各向同性固体材料中含定向非均匀体的有效弹性模量. 物理学报, 2015, 64(20): 206201. doi: 10.7498/aps.64.206201
    [6] 胡海昌. 横观各向同性体的弹性力学的空间问题. 物理学报, 1953, 20(2): 130-148. doi: 10.7498/aps.9.130
    [7] 胡海昌. 横观各向同性的半无限弹性体的若干问题. 物理学报, 1954, 25(3): 239-258. doi: 10.7498/aps.10.239
    [8] 关 威, 胡恒山, 储昭坦. 声诱导电磁场的赫兹矢量表示与多极声电测井模拟. 物理学报, 2006, 55(1): 267-274. doi: 10.7498/aps.55.267
    [9] 熊小明, 陶瑞宝. 半导体超晶格中的有效弹性模量. 物理学报, 1988, 37(7): 1110-1118. doi: 10.7498/aps.37.1110
    [10] 杜启振, 刘莲莲, 孙晶波. 各向异性粘弹性孔隙介质地震波场伪谱法正演模拟. 物理学报, 2007, 56(10): 6143-6149. doi: 10.7498/aps.56.6143
    [11] 顾世杰. 各向同性介质中任意偏振光的简并四波混频. 物理学报, 1984, 33(5): 593-601. doi: 10.7498/aps.33.593
    [12] 胡海昌. 球面各向同性体弹性力学的一般理论. 物理学报, 1954, 23(1): 57-70. doi: 10.7498/aps.10.57
    [13] 胡海昌. 在体积力作用下橫觀各向同性弹性体的平衡问题. 物理学报, 1955, 29(3): 219-230. doi: 10.7498/aps.11.219
    [14] 胡海昌. 橫觀各向同性弹性体的振动问题. 物理学报, 1955, 29(3): 231-238. doi: 10.7498/aps.11.231
    [15] 戴显英, 杨程, 宋建军, 张鹤鸣, 郝跃, 郑若川. 应变Ge空穴有效质量的各向异性与各向同性. 物理学报, 2012, 61(23): 237102. doi: 10.7498/aps.61.237102
    [16] 杨慧珠, 杜启振. 方位各向异性黏弹性介质波场有限元模拟. 物理学报, 2003, 52(8): 2010-2014. doi: 10.7498/aps.52.2010
    [17] 丁 锐, 王志良, 小仓久直. 二维各向同性均匀随机介质中平面波的传播及其局域性. 物理学报, 2008, 57(9): 5519-5528. doi: 10.7498/aps.57.5519
    [18] 任朗. 椭圆截面的无限长金属棒对任意平面电磁波在有损耗的均匀各向同性无限媒质中的散射. 物理学报, 1961, 75(7): 321-328. doi: 10.7498/aps.17.321
    [19] 刘炳东, 何国柱. 用高能核子非弹性散射研究核力有效势. 物理学报, 1966, 130(5): 569-579. doi: 10.7498/aps.22.569
    [20] 孔丽云, 王一博, 杨慧珠. 裂缝诱导TTI双孔隙介质波场传播特征. 物理学报, 2013, 62(13): 139101. doi: 10.7498/aps.62.139101
  • 引用本文:
    Citation:
计量
  • 文章访问数:  875
  • PDF下载量:  526
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-05-27
  • 修回日期:  2013-10-02
  • 刊出日期:  2014-01-05

含定向非均匀体固体材料的横观各向同性有效弹性模量

  • 1. 哈尔滨工业大学, 航天科学与力学系, 哈尔滨 150001
    基金项目: 

    国家自然科学基金(批准号:41174110,11372091)资助的课题.

摘要: 针对非均匀体定向指向的情况,将非均匀体对弹性波的散射等效为球形有效体对弹性波的散射,推导出了呈现横观各向同性的有效弹性模量. 理论分析表明:本文得到的有效模量公式至少具有二阶精度. 数值计算表明:本文的有效模量随孔隙度增加而降低,不会出现Hudson模型中在孔隙度超过一定阈值后不减反增的问题. 另外,在非均匀体指向随机的情况,本文得到的有效模量公式归结为Kuster-Toksöz模型的公式. 对于由扁状裂隙作为非均匀体的孔隙岩石,裂隙内液体主要影响横观各向同性对称轴方向的纵波模量.

English Abstract

参考文献 (30)

目录

    /

    返回文章
    返回