搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SeN2自由基解析势能函数的耦合簇理论研究

曾晖 赵俊

SeN2自由基解析势能函数的耦合簇理论研究

曾晖, 赵俊
PDF
导出引用
导出核心图
  • 利用单双迭代耦合簇理论CCSD结合相关一致四重基组cc-pVQZ对SeN2基态的平衡结构和谐振频率进行了优化计算. 计算结果表明:基态SeN2自由基分子稳定态为C2v构型,基态电子组态为X1A1,平衡核间距RSe-N=0.1691 nm,RN-N=0.1970 nm,αN-Se-N=71.289°,离解能De=4.78 eV. 基态简正振动频率分别为:ν1=326.9288 cm-1,ν2=808.0161 cm-1以及ν3=948.3430 cm-1. 对SeN基态和N2 基态采用上述相同方法进行几何构型与谐振频率的计算并进行单点能扫描,使用Murrell-Sorbie函数进行最小二乘拟合得到其势能函数和光谱常数,通过和其他理论值以及实验值做比较,显示本文的计算工作达到了很高的精度. 应用多体项展式理论导出了基态SeN2的全空间解析势能函数,其势能函数等值势能图准确再现了SeN2分子的结构特征和能量变化.
    • 基金项目: 国家自然科学基金(批准号:11304022,11347010)、湖北省教育厅科学研究项目(批准号:Q20131208,T201204)、长江大学优秀青年教师支持计划(批准号:cyq201321,cyq201322)和长江大学基础学科科学研究发展基金支持计划(批准号:2013cjp10)资助的课题.
    [1]

    Uhm S J, Gupta M K, Yang J H, Lee S H, Lee H T 2007 Mol. Reprod. Dev. 74 1386

    [2]

    Schomburg L, Schweizer U, Koehrle J 2004 CMLS Cellular and Molecular Life 61 1988

    [3]

    Mugesh G, Singh H B 2002 Acc. Chem. Res. 35 226

    [4]

    Kandasamy K, Kumar S, Singh H B, Butcher R J, Holman K T 2004 J. Inorg. Chem. 1014

    [5]

    Klapotke T M, Krumm B, Polborn K 2004 J. Am. Chem. Soc. 126 710

    [6]

    Panda A, Mugesh G, Singh H B, Butcher R J 1999 Organometallics 18 1986

    [7]

    Jenkins D B, Roobottom H K 1999 Inorg. Chem. 38 3609

    [8]

    Bachrach S M, Jiang S L 1998 Internet J. Chem. 45 698

    [9]

    Pearson J K, Ban F Q, Boyd R J 2005 J. Phys. Chem. A 109 1089

    [10]

    Heverly-Coulson G S, Boyd R J 2011 J. Phys. Chem. A 115 4827

    [11]

    Harding L, Jones W E, Yee K K 1971 Can. J. Phys. 49 2033

    [12]

    Yee K K, Jones W E 1971 J. Mol. Spectrosc. 37 304

    [13]

    Liu X P, Zhang C, Tian D T 2008 J. Huazhong Normal Univ. (Nat. Sci.) 42 81 (in Chinese) [刘信平, 张弛, 田大厅 2008 华中师范大学学报 (自然科学版) 42 81]

    [14]

    Frisch M J, Trucks G W, Schlegel H B 2004 Gaussian 03 Revision D.01 (Pittsburgh: Gaussian Inc.)

    [15]

    Zhu Z H, Yu H G 1997 Molecular Structure and Potential Energy Function (Beijing: Science Press) p102 (in Chinese) [朱正和, 俞华根 1997 分子结构与分子势能函数 (北京: 科学出版社) 第102页]

    [16]

    Gao T, Tang Y J, Wang H Y, Yi Y G, Jiang G, Tan M L, Zhu Z H 1998 J. Atom. Mol. Phys. 3 329 (in Chinese) [高涛, 唐永建, 王红艳, 易有根, 蒋刚, 谭明亮, 朱正和 1998 原子分子物理学报 3 329]

    [17]

    Huber K P, Herzberg G 1979 Molecular Spectra and Molecular Structure (Vol. 4) (New York: van Nostrand Reinhold Company) p488

    [18]

    Zhu H J, Wei Y, Wei J, Liu L Y 2013 J. Atom. Mol. Phys. 3 371 (in Chinese) [祝恒江, 魏莹, 魏婕, 刘立仁 2013 原子分子物理学报 3 371]

    [19]

    Zhou L S, Yan B, Jin M X 2013 Chin. Phys. B 22 043102

    [20]

    Zeng H, Zhao J 2012 Chin. Phys. B 21 078202

    [21]

    Wu D L, Xie A D, Yu X G, Wan H J 2012 Chin. Phys. B 21 043103

    [22]

    Wang J M, Liu Q 2013 Chin. Phys. B 22 093102

  • [1]

    Uhm S J, Gupta M K, Yang J H, Lee S H, Lee H T 2007 Mol. Reprod. Dev. 74 1386

    [2]

    Schomburg L, Schweizer U, Koehrle J 2004 CMLS Cellular and Molecular Life 61 1988

    [3]

    Mugesh G, Singh H B 2002 Acc. Chem. Res. 35 226

    [4]

    Kandasamy K, Kumar S, Singh H B, Butcher R J, Holman K T 2004 J. Inorg. Chem. 1014

    [5]

    Klapotke T M, Krumm B, Polborn K 2004 J. Am. Chem. Soc. 126 710

    [6]

    Panda A, Mugesh G, Singh H B, Butcher R J 1999 Organometallics 18 1986

    [7]

    Jenkins D B, Roobottom H K 1999 Inorg. Chem. 38 3609

    [8]

    Bachrach S M, Jiang S L 1998 Internet J. Chem. 45 698

    [9]

    Pearson J K, Ban F Q, Boyd R J 2005 J. Phys. Chem. A 109 1089

    [10]

    Heverly-Coulson G S, Boyd R J 2011 J. Phys. Chem. A 115 4827

    [11]

    Harding L, Jones W E, Yee K K 1971 Can. J. Phys. 49 2033

    [12]

    Yee K K, Jones W E 1971 J. Mol. Spectrosc. 37 304

    [13]

    Liu X P, Zhang C, Tian D T 2008 J. Huazhong Normal Univ. (Nat. Sci.) 42 81 (in Chinese) [刘信平, 张弛, 田大厅 2008 华中师范大学学报 (自然科学版) 42 81]

    [14]

    Frisch M J, Trucks G W, Schlegel H B 2004 Gaussian 03 Revision D.01 (Pittsburgh: Gaussian Inc.)

    [15]

    Zhu Z H, Yu H G 1997 Molecular Structure and Potential Energy Function (Beijing: Science Press) p102 (in Chinese) [朱正和, 俞华根 1997 分子结构与分子势能函数 (北京: 科学出版社) 第102页]

    [16]

    Gao T, Tang Y J, Wang H Y, Yi Y G, Jiang G, Tan M L, Zhu Z H 1998 J. Atom. Mol. Phys. 3 329 (in Chinese) [高涛, 唐永建, 王红艳, 易有根, 蒋刚, 谭明亮, 朱正和 1998 原子分子物理学报 3 329]

    [17]

    Huber K P, Herzberg G 1979 Molecular Spectra and Molecular Structure (Vol. 4) (New York: van Nostrand Reinhold Company) p488

    [18]

    Zhu H J, Wei Y, Wei J, Liu L Y 2013 J. Atom. Mol. Phys. 3 371 (in Chinese) [祝恒江, 魏莹, 魏婕, 刘立仁 2013 原子分子物理学报 3 371]

    [19]

    Zhou L S, Yan B, Jin M X 2013 Chin. Phys. B 22 043102

    [20]

    Zeng H, Zhao J 2012 Chin. Phys. B 21 078202

    [21]

    Wu D L, Xie A D, Yu X G, Wan H J 2012 Chin. Phys. B 21 043103

    [22]

    Wang J M, Liu Q 2013 Chin. Phys. B 22 093102

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1304
  • PDF下载量:  317
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-11-11
  • 修回日期:  2013-12-10
  • 刊出日期:  2014-03-05

SeN2自由基解析势能函数的耦合簇理论研究

  • 1. 长江大学物理科学与技术学院, 荆州 434023
    基金项目: 

    国家自然科学基金(批准号:11304022,11347010)、湖北省教育厅科学研究项目(批准号:Q20131208,T201204)、长江大学优秀青年教师支持计划(批准号:cyq201321,cyq201322)和长江大学基础学科科学研究发展基金支持计划(批准号:2013cjp10)资助的课题.

摘要: 利用单双迭代耦合簇理论CCSD结合相关一致四重基组cc-pVQZ对SeN2基态的平衡结构和谐振频率进行了优化计算. 计算结果表明:基态SeN2自由基分子稳定态为C2v构型,基态电子组态为X1A1,平衡核间距RSe-N=0.1691 nm,RN-N=0.1970 nm,αN-Se-N=71.289°,离解能De=4.78 eV. 基态简正振动频率分别为:ν1=326.9288 cm-1,ν2=808.0161 cm-1以及ν3=948.3430 cm-1. 对SeN基态和N2 基态采用上述相同方法进行几何构型与谐振频率的计算并进行单点能扫描,使用Murrell-Sorbie函数进行最小二乘拟合得到其势能函数和光谱常数,通过和其他理论值以及实验值做比较,显示本文的计算工作达到了很高的精度. 应用多体项展式理论导出了基态SeN2的全空间解析势能函数,其势能函数等值势能图准确再现了SeN2分子的结构特征和能量变化.

English Abstract

参考文献 (22)

目录

    /

    返回文章
    返回