搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

溅射后硒化法制备的CIGS薄膜中Ga元素扩散研究

毛启楠 张晓勇 李学耕 贺劲鑫 于平荣 王东

溅射后硒化法制备的CIGS薄膜中Ga元素扩散研究

毛启楠, 张晓勇, 李学耕, 贺劲鑫, 于平荣, 王东
PDF
导出引用
导出核心图
  • 溅射后硒化制备Cu(In,Ga)Se2吸收层工艺过程中,Ga元素在吸收层底部富集现象是较为普遍的. 本文从预制层工艺和硒化工艺两个方面研究了Ga 元素在Cu(In,Ga)Se2吸收层中扩散的影响因素. 结果表明,预制层中的Cu/(In+Ga)和硒化温度对Ga元素扩散的影响较为显著,而预制层中的Ga/(In+Ga)对Ga元素扩散的影响较小,Ga元素的扩散系数制约了其在Cu(In,Ga)Se2吸收层表面的含量. 通过工艺优化提高吸收层表面的Ga含量,制备获得了光电转换效率为12.42%的Cu(In,Ga)Se2薄膜太阳能电池.
    • 基金项目: 国家高技术研究发展计划(批准号:2012AA050702,2013AA050904)、国家重大科学研究计划(批准号:2011CB933300,2013CB934004)、国家自然科学基金(批准号:21371016)和国家科技支撑计划(批准号:2011BAK16B01)资助的课题.
    [1]

    Chirila A, Reinhard P, Pianezzi F, Bloesch P, Uhl A R, Fella C, Kranz L, Keller D, Gretener C, Hagendorfer H, Jaeger D, Erni R, Nishiwaki S, Buecheler S, Tiwari A N 2013 Nat. Mater. 12 1107

    [2]

    Powalla M, Jackson P, Witte W, Hariskos D, Paetel S, Tschamber C, Wischmann W 2013 Sol. Energy Mater. Sol. Cells 119 51

    [3]

    Komaki H, Furue S, Yamada A, Ishizuka S, Shibata H, Matsubara K, Niki S 2012 Prog. Photovoltaics 20 595

    [4]

    Liu F F, Sun Y, He Q 2014 Acta Phys. Sin. 63 047201 (in Chinese) [刘芳芳, 孙云, 何青 2014 物理学报 63 047201]

    [5]

    Chen D S, Yang J, Xu F, Zhou P H, Du H W, Shi J W, Yu Z S, Zhang Y H, Bartholomeusz B, Ma Z Q 2013 Chin. Phys. B 22 018801

    [6]

    Niki S, Contreras M, Repins I, Powalla M, Kushiya K, Ishizuka S, Matsubara K 2010 Prog. Photovoltaics 18 453

    [7]

    Cahen D, Noufi R 1992 J. Phys. Chem. Solids 53 991

    [8]

    Purwins M, Weber A, Berwian P, Mller G, Hergert F, Jost S, Hock R 2006 J. Cryst. Growth 287 408

    [9]

    Pan H P, Bo L K, Huang T W, Zhang Y, Yu T, Yao S D 2012 Acta Phys. Sin. 61 228801 (in Chinese) [潘惠平, 薄连坤, 黄太武, 张毅, 于涛, 姚淑德 2012 物理学报 61 228801]

    [10]

    Liang H F, Avachat U, Liu W, van Duren J, Le M 2012 Solid-State Electron. 76 95

    [11]

    Hsu H R, Hsu S C, Liu Y S 2012 Sol. Energy 86 48

    [12]

    Kim W K, Hanket G M, Shafarman W N 2011 Sol. Energy Mater. Sol. Cells 95 235

    [13]

    Lin Y C, Yen W T, Chen Y L, Wang L Q, Jih F W 2011 Physica B 406 824

    [14]

    Chanatana J, Murata M, Higuchi T, Watanabe T, Teraji S, Kawamura K, Minemoto T 2013 J. Appl. Phys. 114 084501

    [15]

    Schroeder D, Berry G, Rockett A 1996 Appl. Phys. Lett. 69 4068

    [16]

    Huang J H 1996 Diffusion in Metals and Alloys (Beijing: Metallurgical Industry Press) p50 (in Chinese) [黄继华 1996 金属及合金中的扩散(北京:冶金工业出版社)第50页]

    [17]

    Han A J, Sun Y, Li Z G, Li B Y, He J J, Zhang Y, Liu W 2013 Acta Phys. Sin. 62 048401 (in Chinese) [韩安军, 孙云, 李志国, 李博研, 何静靖, 张毅, 刘玮 2013 物理学报 62 048401]

  • [1]

    Chirila A, Reinhard P, Pianezzi F, Bloesch P, Uhl A R, Fella C, Kranz L, Keller D, Gretener C, Hagendorfer H, Jaeger D, Erni R, Nishiwaki S, Buecheler S, Tiwari A N 2013 Nat. Mater. 12 1107

    [2]

    Powalla M, Jackson P, Witte W, Hariskos D, Paetel S, Tschamber C, Wischmann W 2013 Sol. Energy Mater. Sol. Cells 119 51

    [3]

    Komaki H, Furue S, Yamada A, Ishizuka S, Shibata H, Matsubara K, Niki S 2012 Prog. Photovoltaics 20 595

    [4]

    Liu F F, Sun Y, He Q 2014 Acta Phys. Sin. 63 047201 (in Chinese) [刘芳芳, 孙云, 何青 2014 物理学报 63 047201]

    [5]

    Chen D S, Yang J, Xu F, Zhou P H, Du H W, Shi J W, Yu Z S, Zhang Y H, Bartholomeusz B, Ma Z Q 2013 Chin. Phys. B 22 018801

    [6]

    Niki S, Contreras M, Repins I, Powalla M, Kushiya K, Ishizuka S, Matsubara K 2010 Prog. Photovoltaics 18 453

    [7]

    Cahen D, Noufi R 1992 J. Phys. Chem. Solids 53 991

    [8]

    Purwins M, Weber A, Berwian P, Mller G, Hergert F, Jost S, Hock R 2006 J. Cryst. Growth 287 408

    [9]

    Pan H P, Bo L K, Huang T W, Zhang Y, Yu T, Yao S D 2012 Acta Phys. Sin. 61 228801 (in Chinese) [潘惠平, 薄连坤, 黄太武, 张毅, 于涛, 姚淑德 2012 物理学报 61 228801]

    [10]

    Liang H F, Avachat U, Liu W, van Duren J, Le M 2012 Solid-State Electron. 76 95

    [11]

    Hsu H R, Hsu S C, Liu Y S 2012 Sol. Energy 86 48

    [12]

    Kim W K, Hanket G M, Shafarman W N 2011 Sol. Energy Mater. Sol. Cells 95 235

    [13]

    Lin Y C, Yen W T, Chen Y L, Wang L Q, Jih F W 2011 Physica B 406 824

    [14]

    Chanatana J, Murata M, Higuchi T, Watanabe T, Teraji S, Kawamura K, Minemoto T 2013 J. Appl. Phys. 114 084501

    [15]

    Schroeder D, Berry G, Rockett A 1996 Appl. Phys. Lett. 69 4068

    [16]

    Huang J H 1996 Diffusion in Metals and Alloys (Beijing: Metallurgical Industry Press) p50 (in Chinese) [黄继华 1996 金属及合金中的扩散(北京:冶金工业出版社)第50页]

    [17]

    Han A J, Sun Y, Li Z G, Li B Y, He J J, Zhang Y, Liu W 2013 Acta Phys. Sin. 62 048401 (in Chinese) [韩安军, 孙云, 李志国, 李博研, 何静靖, 张毅, 刘玮 2013 物理学报 62 048401]

  • [1] 袁怀亮, 李俊鹏, 王鸣魁. 有机无机杂化固态太阳能电池的研究进展. 物理学报, 2015, 64(3): 038405. doi: 10.7498/aps.64.038405
    [2] 李小娟, 韦尚江, 吕文辉, 吴丹, 李亚军, 周文政. 一种新方法制备硅/聚(3, 4-乙撑二氧噻吩)核/壳纳米线阵列杂化太阳能电池. 物理学报, 2013, 62(10): 108801. doi: 10.7498/aps.62.108801
    [3] 李 健, 朱 洁. 硒化技术对CuInSe2薄膜表面形貌和晶相的影响. 物理学报, 2007, 56(1): 574-582. doi: 10.7498/aps.56.574
    [4] 夏俊民, 梁超, 邢贵川. 喷墨打印钙钛矿太阳能电池研究进展与展望. 物理学报, 2019, 68(15): 158807. doi: 10.7498/aps.68.20190302
    [5] 柯少颖, 王茺, 潘涛, 何鹏, 杨杰, 杨宇. 渐变带隙氢化非晶硅锗薄膜太阳能电池的优化设计. 物理学报, 2014, 63(2): 028802. doi: 10.7498/aps.63.028802
    [6] 丁美斌, 娄朝刚, 王琦龙, 孙强. GaAs量子阱太阳能电池量子效率的研究. 物理学报, 2014, 63(19): 198502. doi: 10.7498/aps.63.198502
    [7] 孔光临, 曾湘波, 许 颖, 刁宏伟, 廖显伯, 郝会颖. 非晶/微晶相变域硅薄膜及其太阳能电池. 物理学报, 2005, 54(7): 3327-3331. doi: 10.7498/aps.54.3327
    [8] 付鹏飞, 虞丹妮, 彭子健, 龚晋慷, 宁志军. 扭曲二维结构钝化的钙钛矿太阳能电池. 物理学报, 2019, 68(15): 158802. doi: 10.7498/aps.68.20190306
    [9] 张丹霏, 郑灵灵, 马英壮, 王树峰, 卞祖强, 黄春辉, 龚旗煌, 肖立新. 影响杂化钙钛矿太阳能电池稳定性的因素探讨. 物理学报, 2015, 64(3): 038803. doi: 10.7498/aps.64.038803
    [10] 王基铭, 陈科, 谢伟广, 时婷婷, 刘彭义, 郑毅帆, 朱瑞. 溶液法制备全无机钙钛矿太阳能电池的研究进展. 物理学报, 2019, 68(15): 158806. doi: 10.7498/aps.68.20190355
    [11] 谢大弢, 赵夔, 王莉芳, 朱凤, 全胜文, 孟铁军, 张保澄, 陈佳洱. 用磁控溅射和真空硒化退火方法制备高质量的铜铟硒多晶薄膜. 物理学报, 2002, 51(6): 1377-1382. doi: 10.7498/aps.51.1377
    [12] 夏祥, 刘喜哲. CH3NH3I在制备CH3NH3PbI(3-x)Clx钙钛矿太阳能电池中的作用. 物理学报, 2015, 64(3): 038104. doi: 10.7498/aps.64.038104
    [13] 王海啸, 郑新和, 吴渊渊, 甘兴源, 王乃明, 杨辉. 1 eV吸收带边GaInAs/GaNAs超晶格太阳能电池的阱层设计. 物理学报, 2013, 62(21): 218801. doi: 10.7498/aps.62.218801
    [14] 陈晓波, 杨国建, 李永良, 廖红波, 陈鸾, 王亚非, 张春林, 张蕴芝. Er0.3Gd0.7VO4晶体红外量子剪裁效应及其在太阳能电池应用上的研究. 物理学报, 2010, 59(11): 8191-8199. doi: 10.7498/aps.59.8191
    [15] 陈晓波, 徐怡庄, 张春林, 张会敏, 张蕴芝, 周固, 李崧. 基质敏化的Er0.1Gd0.9VO4晶体的红外量子剪裁. 物理学报, 2011, 60(10): 107803. doi: 10.7498/aps.60.107803
    [16] 励旭东, 王文静, 张世斌, 刁宏伟, 曾湘波, 廖显伯, 许 颖. 微量掺碳nc-SiC:H薄膜用于p-i-n太阳电池的窗口层. 物理学报, 2007, 56(5): 2915-2919. doi: 10.7498/aps.56.2915
    [17] 帅佳丽, 刘向鑫, 杨彪. 铁电半导体耦合薄膜电池中的反常载流子传输现象. 物理学报, 2016, 65(11): 118101. doi: 10.7498/aps.65.118101
    [18] 孔光临, 曾湘波, 许 颖, 刁宏伟, 廖显伯, 郝会颖. 非晶/微晶两相硅薄膜电池的计算机模拟. 物理学报, 2005, 54(7): 3370-3374. doi: 10.7498/aps.54.3370
    [19] 彭俊彪, 周晓明, 於黄忠. 不同比例的MEH-PPV与PCBM共混体系光电池性能研究. 物理学报, 2008, 57(6): 3898-3904. doi: 10.7498/aps.57.3898
    [20] 范巍, 曾雉. Cu2ZnSnS4晶界性质与光伏效应的第一性原理研究. 物理学报, 2015, 64(23): 238801. doi: 10.7498/aps.64.238801
  • 引用本文:
    Citation:
计量
  • 文章访问数:  824
  • PDF下载量:  573
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-01-27
  • 修回日期:  2014-02-25
  • 刊出日期:  2014-06-05

溅射后硒化法制备的CIGS薄膜中Ga元素扩散研究

  • 1. 北京大学工学院, 北京 100871;
  • 2. 普尼太阳能(杭州)有限公司, 杭州 310051
    基金项目: 

    国家高技术研究发展计划(批准号:2012AA050702,2013AA050904)、国家重大科学研究计划(批准号:2011CB933300,2013CB934004)、国家自然科学基金(批准号:21371016)和国家科技支撑计划(批准号:2011BAK16B01)资助的课题.

摘要: 溅射后硒化制备Cu(In,Ga)Se2吸收层工艺过程中,Ga元素在吸收层底部富集现象是较为普遍的. 本文从预制层工艺和硒化工艺两个方面研究了Ga 元素在Cu(In,Ga)Se2吸收层中扩散的影响因素. 结果表明,预制层中的Cu/(In+Ga)和硒化温度对Ga元素扩散的影响较为显著,而预制层中的Ga/(In+Ga)对Ga元素扩散的影响较小,Ga元素的扩散系数制约了其在Cu(In,Ga)Se2吸收层表面的含量. 通过工艺优化提高吸收层表面的Ga含量,制备获得了光电转换效率为12.42%的Cu(In,Ga)Se2薄膜太阳能电池.

English Abstract

参考文献 (17)

目录

    /

    返回文章
    返回