搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

像素偏振片阵列制备及其在偏振图像增强中的应用

张志刚 董凤良 张青川 褚卫国 仇康 程腾 高杰 伍小平

像素偏振片阵列制备及其在偏振图像增强中的应用

张志刚, 董凤良, 张青川, 褚卫国, 仇康, 程腾, 高杰, 伍小平
PDF
导出引用
  • 像素偏振片阵列在实时测量光的斯托克斯参量方面具有重要的应用. 本文设计和制作了基于金属铝纳米光栅的像素偏振片阵列,制作工艺基于电子束曝光技术. 偏振片阵列单元尺寸为7.4 μm,每相邻2×2单元的透偏振方向分别为0,π/4,π/2 和3π/4. 光栅周期为140 nm,占空比为0.5,深度100 nm,光栅面型为矩形. 像素偏振片阵列的扫描电子显微镜照片显示,制备的偏振片阵列的金属纳米光栅栅线无断线、无交叉、无杂物污染,光栅栅线结构平直,厚度均匀,满足理想矩形面型. 采用偏振光作为照明光的光学显微镜拍摄图片显示,像素偏振片阵列整体形状规则,具有很好的偏振特性,最大偏振透射率可达到79.3%,消光比可达到454. 将像素偏振片阵列与CCD(charge coupled device)集成在一起,采集单帧图像即可计算图像的斯托克斯参量,从而得到拍摄物体线偏振度图像和线偏振角图像,实现了偏振增强,可应用于目标反隐和识别.
    • 基金项目: 国家重点基础研究发展计划(批准号:2011CB302105)、国家自然科学基金(批准号:11332010,11102201,11372300)和中国科学院科研装备研制项目(批准号:YZ201265)资助的课题.
    [1]

    Frish V K 1949 Experientia 5 142

    [2]

    Collett M, Collett T S, Bisch S, Wehner R 1998 Nature 394 269

    [3]

    Labhart T 1999 J. Exp. Biol. 201 757

    [4]

    Shashar N, Rutledge P, Cronin T W 1996 J. Exp. Biol. 199 2077

    [5]

    Chu J, Zhao K, Zhang Q, Wang T 2008 Sens. Actuators A: Phys. 148 75

    [6]

    Chu J K, Wang Z W, Zhang Y J, Wang Y L 2012 Opt. Precision Eng. 20 2237(in Chinese)[褚金奎, 王志文, 张英杰, 王寅龙 2012 光学精密工程 20 2237]

    [7]

    Nordin G P, Meier J T, Deguzman P C, Jones M W 1999 J. Opt. Soc. Am. A 16 1168

    [8]

    Brock N J, Kimbrugh B T, Millierd J E 2011 Proc. of SPIE San Diego, California, USA, August 21, 2011 p81600W-1

    [9]

    Li X D, Tao G, Yang Y Z 2011 Opt. Laser Eng. 33 53

    [10]

    Ma Z C, Xu Z M, Peng J, Sun T Y, Chen X G, Zhao W Y, Liu S S, Wu X H, Zou C, Liu S Y 2014 Acta Phys. Sin. 63 039101(in Chinese)[马智超, 徐智谋, 彭静, 孙堂友, 陈修国, 赵文宇, 刘思思, 武兴会, 邹超, 刘世元 2014 物理学报 63 039101]

    [11]

    Kang Y L, Qiu Y, Lei Z K, Hu M 2005 Opt. Laser Eng. 43 847

    [12]

    Lei Z K, Kang Y L, Qiu Y, Hu M, Cen H 2004 Chin. Phys. Lett. 21 1377

    [13]

    Zhang Z, Zhang Q, Cheng T, Gao J, Wu X 2013 Opt. Eng. 52 103109

    [14]

    Wang M, Cen Y W, Yu X L, Hu X F, Zhu P P 2008 Acta Phys. Sin. 57 6202(in Chinese)[汪敏, 岑豫皖, 余晓流, 胡小方, 朱佩平 2008 物理学报 57 6202]

    [15]

    Tahara T, Shimozato Y, Xia P, Ito Y, Awatsuji Y, Nishio K, Ura S, Matoba O, Kubota T 2012 Opt. Express 20 19806

    [16]

    Creath K, Goldstein G 2012 Biomed. Opt. Express 3 2866

    [17]

    Gruev V 2011 Opt. Express 19 24361

    [18]

    Zhang Q C, Zhang Z G, Zhao Y, Cheng T, Wu X P 2013 Chinese Patent 201310030039.1 (2013-01-25) (in Chinese)[张青川, 张志刚, 赵旸, 程腾, 伍小平 2013 中国专刊专利申请号: 201310030039.1[2013-01-25]]

    [19]

    Zhao X, Boussaid F, Bermak A, Chigrinov V G 2011 Opt. Express 19 5565

    [20]

    Gruev V, Ortu A, Lazarus N, Spiegel J V, Engheta N 2007 Opt. Express 15 4994

    [21]

    Yang Z Y, Lu Y F 2007 Opt. Express 15 9510

    [22]

    Meng F T, Chu J K, Han Z T, Guo Q 2009 Acta Photon. Sin. 38 951(in Chinese)[孟凡涛, 褚金奎, 韩志涛, 郭庆 2009 光子学报 38 951]

    [23]

    Luo Q, Huang L H, Gu N T, Rao C H 2012 Chin. Phys. B 21 094201

    [24]

    Wang J P, Jin Y X, Ma J Y, Shao J D, Fan Z X 2010 Chin. Phys. B 19 104201

    [25]

    Yu D, Wang H, Liu H P, Wang J, Jiang Y Y, Sun X D 2011 Chin. Phys. B 20 114217

    [26]

    Zhang W F, Kong W J, Yun M J, Liu J H, Sun X 2012 Chin. Phys. B 21 094218

    [27]

    Pan P, An J M, Wang H J, Wang Y, Zhang J S, Wang L L, Dai H Q, Zhang X G, Wu Y D, Hu X W 2014 Chin. Phys. B 23 044210

    [28]

    Bokor N, Shechter R, Davidson N, Friesem A A, Hasman E 2001 Appl. Opt. 40 2076

    [29]

    Zhang N, Chu J K, Zhao K C, Meng F T 2006 Chin. J. Sens. Actuat. 19 1739(in Chinese)[张娜, 褚金奎, 赵开春, 孟凡涛 2006 传感技术学报 19 1739]

    [30]

    Xie H M, Kishimoto S, Shinya N 2000 Opt. Laser Technol. 32 361

    [31]

    Xie H M, Kishimoto S, Li Y J, Liu Q J, Zhao Y P 2009 Microelectron. Reliab. 49 727

    [32]

    Zhao Y R, Lei Z K, Xing Y M 2014 Exp. Mech. 54 45

    [33]

    Xie H M, Dai F L, An B Z, Zhang W 2000 Opt. Tech. 26 526(in Chinese)[谢惠民, 戴福隆, 岸本哲, 张维 2000 光学技术 26 526]

    [34]

    Gruev V, Perkins R 2010 IEEE International Symposium on Circuits and Systems Paris, France, May 30-June 2, 2010 p629

    [35]

    Gruev V, Perkins R, York T 2010 Opt. Express 18 19087

    [36]

    Gruev V, Spiegel J V, Engheta N 2010 Opt. Express 18 19292

  • [1]

    Frish V K 1949 Experientia 5 142

    [2]

    Collett M, Collett T S, Bisch S, Wehner R 1998 Nature 394 269

    [3]

    Labhart T 1999 J. Exp. Biol. 201 757

    [4]

    Shashar N, Rutledge P, Cronin T W 1996 J. Exp. Biol. 199 2077

    [5]

    Chu J, Zhao K, Zhang Q, Wang T 2008 Sens. Actuators A: Phys. 148 75

    [6]

    Chu J K, Wang Z W, Zhang Y J, Wang Y L 2012 Opt. Precision Eng. 20 2237(in Chinese)[褚金奎, 王志文, 张英杰, 王寅龙 2012 光学精密工程 20 2237]

    [7]

    Nordin G P, Meier J T, Deguzman P C, Jones M W 1999 J. Opt. Soc. Am. A 16 1168

    [8]

    Brock N J, Kimbrugh B T, Millierd J E 2011 Proc. of SPIE San Diego, California, USA, August 21, 2011 p81600W-1

    [9]

    Li X D, Tao G, Yang Y Z 2011 Opt. Laser Eng. 33 53

    [10]

    Ma Z C, Xu Z M, Peng J, Sun T Y, Chen X G, Zhao W Y, Liu S S, Wu X H, Zou C, Liu S Y 2014 Acta Phys. Sin. 63 039101(in Chinese)[马智超, 徐智谋, 彭静, 孙堂友, 陈修国, 赵文宇, 刘思思, 武兴会, 邹超, 刘世元 2014 物理学报 63 039101]

    [11]

    Kang Y L, Qiu Y, Lei Z K, Hu M 2005 Opt. Laser Eng. 43 847

    [12]

    Lei Z K, Kang Y L, Qiu Y, Hu M, Cen H 2004 Chin. Phys. Lett. 21 1377

    [13]

    Zhang Z, Zhang Q, Cheng T, Gao J, Wu X 2013 Opt. Eng. 52 103109

    [14]

    Wang M, Cen Y W, Yu X L, Hu X F, Zhu P P 2008 Acta Phys. Sin. 57 6202(in Chinese)[汪敏, 岑豫皖, 余晓流, 胡小方, 朱佩平 2008 物理学报 57 6202]

    [15]

    Tahara T, Shimozato Y, Xia P, Ito Y, Awatsuji Y, Nishio K, Ura S, Matoba O, Kubota T 2012 Opt. Express 20 19806

    [16]

    Creath K, Goldstein G 2012 Biomed. Opt. Express 3 2866

    [17]

    Gruev V 2011 Opt. Express 19 24361

    [18]

    Zhang Q C, Zhang Z G, Zhao Y, Cheng T, Wu X P 2013 Chinese Patent 201310030039.1 (2013-01-25) (in Chinese)[张青川, 张志刚, 赵旸, 程腾, 伍小平 2013 中国专刊专利申请号: 201310030039.1[2013-01-25]]

    [19]

    Zhao X, Boussaid F, Bermak A, Chigrinov V G 2011 Opt. Express 19 5565

    [20]

    Gruev V, Ortu A, Lazarus N, Spiegel J V, Engheta N 2007 Opt. Express 15 4994

    [21]

    Yang Z Y, Lu Y F 2007 Opt. Express 15 9510

    [22]

    Meng F T, Chu J K, Han Z T, Guo Q 2009 Acta Photon. Sin. 38 951(in Chinese)[孟凡涛, 褚金奎, 韩志涛, 郭庆 2009 光子学报 38 951]

    [23]

    Luo Q, Huang L H, Gu N T, Rao C H 2012 Chin. Phys. B 21 094201

    [24]

    Wang J P, Jin Y X, Ma J Y, Shao J D, Fan Z X 2010 Chin. Phys. B 19 104201

    [25]

    Yu D, Wang H, Liu H P, Wang J, Jiang Y Y, Sun X D 2011 Chin. Phys. B 20 114217

    [26]

    Zhang W F, Kong W J, Yun M J, Liu J H, Sun X 2012 Chin. Phys. B 21 094218

    [27]

    Pan P, An J M, Wang H J, Wang Y, Zhang J S, Wang L L, Dai H Q, Zhang X G, Wu Y D, Hu X W 2014 Chin. Phys. B 23 044210

    [28]

    Bokor N, Shechter R, Davidson N, Friesem A A, Hasman E 2001 Appl. Opt. 40 2076

    [29]

    Zhang N, Chu J K, Zhao K C, Meng F T 2006 Chin. J. Sens. Actuat. 19 1739(in Chinese)[张娜, 褚金奎, 赵开春, 孟凡涛 2006 传感技术学报 19 1739]

    [30]

    Xie H M, Kishimoto S, Shinya N 2000 Opt. Laser Technol. 32 361

    [31]

    Xie H M, Kishimoto S, Li Y J, Liu Q J, Zhao Y P 2009 Microelectron. Reliab. 49 727

    [32]

    Zhao Y R, Lei Z K, Xing Y M 2014 Exp. Mech. 54 45

    [33]

    Xie H M, Dai F L, An B Z, Zhang W 2000 Opt. Tech. 26 526(in Chinese)[谢惠民, 戴福隆, 岸本哲, 张维 2000 光学技术 26 526]

    [34]

    Gruev V, Perkins R 2010 IEEE International Symposium on Circuits and Systems Paris, France, May 30-June 2, 2010 p629

    [35]

    Gruev V, Perkins R, York T 2010 Opt. Express 18 19087

    [36]

    Gruev V, Spiegel J V, Engheta N 2010 Opt. Express 18 19292

  • [1] 马婧, 刘冬冬, 王继成, 冯延. 基于金属狭缝阵列的各向异性偏振分束器. 物理学报, 2018, 67(9): 094102. doi: 10.7498/aps.67.20172292
    [2] 凌进中, 黄元申, 王中飞, 王琦, 张大伟, 庄松林. 可调谐型金属线栅偏振器的特性研究 . 物理学报, 2013, 62(14): 144214. doi: 10.7498/aps.62.144214
    [3] 朱光喜, 黄德修, 张新亮, 李培丽. 基于多电极单端耦合半导体光放大器的交叉增益调制型波长转换器. 物理学报, 2006, 55(6): 2746-2750. doi: 10.7498/aps.55.2746
    [4] 祁云平, 南向红, 摆玉龙, 王向贤. 基于SPPs-CDEW混合模式的亚波长单缝多凹槽结构全光二极管. 物理学报, 2017, 66(11): 117102. doi: 10.7498/aps.66.117102
    [5] 褚金奎, 王倩怡, 王志文, 王立鼎. 双层金属纳米光栅的TE偏振光异常透射特性. 物理学报, 2015, 64(16): 164206. doi: 10.7498/aps.64.164206
    [6] 黄翀, 陈海清, 廖兆曙, 赵爽. 高量级光衰减时对线偏振片组衰光系数的研究. 物理学报, 2010, 59(3): 1756-1761. doi: 10.7498/aps.59.1756
    [7] 吴福全, 彭志红, 张淳民, 赵葆常, 李英才. 新型偏振干涉成像光谱仪中Savart偏光镜透射率的研究. 物理学报, 2006, 55(12): 6374-6381. doi: 10.7498/aps.55.6374
    [8] 杜 娟, 张淳民, 孙 尧, 赵葆常. 稳态大视场偏振干涉成像光谱仪中视场补偿型Savart偏光镜透射率研究. 物理学报, 2008, 57(10): 6311-6318. doi: 10.7498/aps.57.6311
    [9] 殷澄, 阚雪芬, 韩庆邦, 许田. 金属纳米颗粒二聚体阵列的消光截面. 物理学报, 2020, (): . doi: 10.7498/aps.69.20200964
    [10] 殷澄, 许田, 陈秉岩, 韩庆邦. 金属粒子阵列共振的偏振特性. 物理学报, 2015, 64(16): 164202. doi: 10.7498/aps.64.164202
    [11] 赵华君, 杨守良, 张东, 梁康有, 程正富, 石东平. 亚波长金属偏振分束光栅设计分析. 物理学报, 2009, 58(9): 6236-6242. doi: 10.7498/aps.58.6236
    [12] 甘巧强, 白文理, 郭宝山, 蔡利康, 宋国峰. 亚波长金属光栅的光耦合增强效应及透射局域化的模拟研究. 物理学报, 2009, 58(11): 8021-8026. doi: 10.7498/aps.58.8021
    [13] 陈聿, 刘垄, 黄忠, 屠林林, 詹鹏. 一维金属光栅嵌入磁性介质纳米结构下的横向磁光克尔效应的增强. 物理学报, 2016, 65(14): 147302. doi: 10.7498/aps.65.147302
    [14] 金晓峰, 庄志诚, 毛敏耀, 亢昌军, 王添平, 解健芳, 谭淞生, 王渭源, 章熙康. 金刚石薄膜的光学透射率研究. 物理学报, 1995, 44(9): 1509-1515. doi: 10.7498/aps.44.1509
    [15] 于美文, 张存林. 光致各向异性记录介质偏振全息图的透射矩阵. 物理学报, 1992, 41(5): 759-765. doi: 10.7498/aps.41.759
    [16] 黄运欢, 李璞. 金纳米棒复合体的消光特性. 物理学报, 2015, 64(20): 207301. doi: 10.7498/aps.64.207301
    [17] 谈春雷, 易永祥, 汪国平. 一维金属光栅的透射光学特性. 物理学报, 2002, 51(5): 1063-1067. doi: 10.7498/aps.51.1063
    [18] 刘钰薇, 张文海, 张继成, 范全平, 魏来, 晏卓阳, 赵屹东, 崔明启, 邱荣, 曹磊峰. 准随机矩形孔阵列透射光栅. 物理学报, 2015, 64(7): 074201. doi: 10.7498/aps.64.074201
    [19] 邱昆, 武保剑, 文峰. 磁光光纤Bragg光栅中圆偏振光的非线性传输特性. 物理学报, 2009, 58(3): 1726-1730. doi: 10.7498/aps.58.1726
    [20] 曾志文, 刘海涛, 张斯文. 基于Fabry-Perot模型设计亚波长金属狭缝阵列光学异常透射折射率传感器. 物理学报, 2012, 61(20): 200701. doi: 10.7498/aps.61.200701
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1181
  • PDF下载量:  733
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-02-26
  • 修回日期:  2014-04-10
  • 刊出日期:  2014-09-05

像素偏振片阵列制备及其在偏振图像增强中的应用

  • 1. 中国科学技术大学近代力学系, 中国科学院材料力学行为与设计重点实验室, 合肥 230027;
  • 2. 国家纳米科学中心 纳米加工技术实验室, 北京 100190
    基金项目: 

    国家重点基础研究发展计划(批准号:2011CB302105)、国家自然科学基金(批准号:11332010,11102201,11372300)和中国科学院科研装备研制项目(批准号:YZ201265)资助的课题.

摘要: 像素偏振片阵列在实时测量光的斯托克斯参量方面具有重要的应用. 本文设计和制作了基于金属铝纳米光栅的像素偏振片阵列,制作工艺基于电子束曝光技术. 偏振片阵列单元尺寸为7.4 μm,每相邻2×2单元的透偏振方向分别为0,π/4,π/2 和3π/4. 光栅周期为140 nm,占空比为0.5,深度100 nm,光栅面型为矩形. 像素偏振片阵列的扫描电子显微镜照片显示,制备的偏振片阵列的金属纳米光栅栅线无断线、无交叉、无杂物污染,光栅栅线结构平直,厚度均匀,满足理想矩形面型. 采用偏振光作为照明光的光学显微镜拍摄图片显示,像素偏振片阵列整体形状规则,具有很好的偏振特性,最大偏振透射率可达到79.3%,消光比可达到454. 将像素偏振片阵列与CCD(charge coupled device)集成在一起,采集单帧图像即可计算图像的斯托克斯参量,从而得到拍摄物体线偏振度图像和线偏振角图像,实现了偏振增强,可应用于目标反隐和识别.

English Abstract

参考文献 (36)

目录

    /

    返回文章
    返回