搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多孔氧化铝薄膜的光致发光起源: 三种缺陷中心

李国栋 王倩 邓保霞 张雅晶

多孔氧化铝薄膜的光致发光起源: 三种缺陷中心

李国栋, 王倩, 邓保霞, 张雅晶
PDF
导出引用
导出核心图
  • 在草酸溶液中用二次阳极氧化法制备了纳米多孔氧化铝薄膜, 分析了制备过程中氧化铝薄膜中缺陷的形成机理. 场发射电子显微镜给出了薄膜的表面形貌和结构. X 射线色散能谱和傅里叶红外透射光谱测试表明, 进入薄膜中的草酸杂质加热到500 ℃未全部分解. 对多孔氧化铝薄膜的光致发光PL光谱做了高斯拟合, 结合测试结果和薄膜中的缺陷分析指出: 多孔氧化铝薄膜的发光由F+, F和草酸杂质相关缺陷引起, 对应发光中心分别在402, 433, 475 nm处, 并提出F中心起主导作用. 对不同草酸浓度中制备的多孔氧化铝薄膜的PL光谱讨论指出: 随草酸浓度增加, 三种发光中心的峰位不会发生变化, 但相对强度发生改变, F+中心和F中心减少, 草酸杂质相关发光中心增加, PL 峰红移. 最后提出通过控制草酸浓度来控制多孔氧化铝薄膜中的草酸杂质. 此研究将对多孔氧化铝薄膜发光起源和机理有更深入的理解, 同时也为多孔氧化铝薄膜的制备提供一种全新的思路.
    • 基金项目: 国家自然科学基金(批准号: 11065009)和新疆研究生科研创新项目(批准号: XJGRI2014014)资助的课题.
    [1]

    Keller F, Hunter M S, Robinson D L 1953 J. Electrochem. Soc. 100 411

    [2]

    Masuda H, Fukuda K 1995 Science 268 1466

    [3]

    Zhou W Y, Li Y B, Liu Z Q, Tang D S, Zou X P, Wang G 2001 Chin. Phys. B 10 0218

    [4]

    Cao H Q, Xu Y, Hong J M, Liu H B, Yin G, Li B L, Tie C Y, Xu Z 2001 Adv. Mater. 13 1393

    [5]

    Zhang J J, Li Z Y, Zhang H M, Hou X, Sun H Y 2013 Chin. Phys. B 22 087805

    [6]

    Pen D J, Mbindyo J K N, Carado A J, Mallouk T E, Keating C D, Razavi B, Mayer T S 2002 J. Phys. Chem. B 106 7458

    [7]

    Zhu X F, Han H, Song Y, Ma H T, Qi W X, Lu C, Xu C 2012 Acta Phys. Sin. 61 228202 (in Chinese) [朱绪飞, 韩华, 宋晔, 马宏图, 戚卫星, 路超, 徐辰 2012 物理学报 61 228202]

    [8]

    Li A P, Muller F, Briner A, Nielsch K, Gosele U 1999 Adv. Mater. 11 483

    [9]

    Nahar R K, Khanna V K 1998 Sens. Actuaors B 46 35

    [10]

    Kukhta A V, Gorokh G G, Kolesnik E E, Mitkovets A I, Taoubi M I, Koshin Y A 2002 Surf. Sci. 507-510 593

    [11]

    Azevedo W M, Oliveira G B, Silva Jr E F, Khoury H J, Oliveira de Jesus E F 2006 Radiat. Prot. Dosim. 119 201

    [12]

    Zhang B, Zhang H J, Yang Q H, Lu S Z 2010 Acta Phys. Sin. 59 1333 (in Chinese) [张斌, 张浩佳, 杨秋红, 陆神洲 2010 物理学报 59 1333]

    [13]

    Ghrib M, Ouertania R, Gaidia M 2012 Appl. Surf. Sci. 258 4995

    [14]

    Qin F F, Zhang H M, Wang C X, Guo C, Zhang J J 2014 Acta Phys. Sin. 63 198802 (in Chinese) [秦飞飞, 张海明, 王彩霞, 郭聪, 张晶晶 2014 物理学报 63 198802]

    [15]

    Xu W L, Zheng M J, Wu S, Shen W Z 2004 Appl. Phys. Lett. 85 4364

    [16]

    Liu J, Liu S, Zhou H H, Xie C J, Huang Z Y, Fu C P, Kuang Y F 2014 Thin Solid Films 552 75

    [17]

    Du Y, Cai W L, Mo C M, Chen J, Zhang L D, Zhu X G 1999 Appl. Phys. Lett. 74 2951

    [18]

    Sun X Y, Xu F Q, Li Z M, Zhang W H 2006 J. Lumin. 121 588

    [19]

    Huang G S, Wu X L, Mei Y F, Shao X F, Siu G G 2003 J. Appl. Phys. 93 582

    [20]

    Li Z J, Huang K L 2007 J. Lumin. 127 435

    [21]

    Khan G G, Singh A K, Mandal K 2013 J. Lumin. 134 772

    [22]

    Fang D, Li L C, Xu W L, Wang Y L, Jiang M, Guo X Q, Liu X 2014 Sci. Engineer. B 179 71

    [23]

    Yamamoto Y, Baba N, Tajima S 1981 Nature 289 572

    [24]

    Li Y, Li G H, Meng G W, Zhang L D, Phillipp F 2001 J. Phys. Condens. Matter 13 2691

    [25]

    Huang G S, Wu X L, Yang L W, Shao X F, Siu G G, Chu P K 2005 Appl. Phys. A: Mater. Sci. Process 81 1345

    [26]

    Vrublevsky I, Chernyakova K, Ispas A, Bund A, Gaponik N, Dubavik A 2011 J. Lumin. 131 938

    [27]

    Rauf A, Mehmood M, Ahmed M, Hasan M, Aslam M 2010 J. Lumin. 130 792

    [28]

    Chen W, Tang H G, Shi C S, Deng J, Shi J Y, Zhou Y X, Xia S D, Wang Y X, Yin S T 1995 Appl. Phys. Lett. 67 317

    [29]

    Draeger B G, Summers G P 1979 Phys. Rev. B 19 1172

    [30]

    Fu G S, Wang X Z, Lu W B, Dai W L, Li X K, Yu W 2012 Chin. Phys. B 21 107802

    [31]

    Yang X B, Li H J, Bi Q Y, Cheng Y, Tang Q, Xu J 2008 J. Appl. Phys. 104 123112

  • [1]

    Keller F, Hunter M S, Robinson D L 1953 J. Electrochem. Soc. 100 411

    [2]

    Masuda H, Fukuda K 1995 Science 268 1466

    [3]

    Zhou W Y, Li Y B, Liu Z Q, Tang D S, Zou X P, Wang G 2001 Chin. Phys. B 10 0218

    [4]

    Cao H Q, Xu Y, Hong J M, Liu H B, Yin G, Li B L, Tie C Y, Xu Z 2001 Adv. Mater. 13 1393

    [5]

    Zhang J J, Li Z Y, Zhang H M, Hou X, Sun H Y 2013 Chin. Phys. B 22 087805

    [6]

    Pen D J, Mbindyo J K N, Carado A J, Mallouk T E, Keating C D, Razavi B, Mayer T S 2002 J. Phys. Chem. B 106 7458

    [7]

    Zhu X F, Han H, Song Y, Ma H T, Qi W X, Lu C, Xu C 2012 Acta Phys. Sin. 61 228202 (in Chinese) [朱绪飞, 韩华, 宋晔, 马宏图, 戚卫星, 路超, 徐辰 2012 物理学报 61 228202]

    [8]

    Li A P, Muller F, Briner A, Nielsch K, Gosele U 1999 Adv. Mater. 11 483

    [9]

    Nahar R K, Khanna V K 1998 Sens. Actuaors B 46 35

    [10]

    Kukhta A V, Gorokh G G, Kolesnik E E, Mitkovets A I, Taoubi M I, Koshin Y A 2002 Surf. Sci. 507-510 593

    [11]

    Azevedo W M, Oliveira G B, Silva Jr E F, Khoury H J, Oliveira de Jesus E F 2006 Radiat. Prot. Dosim. 119 201

    [12]

    Zhang B, Zhang H J, Yang Q H, Lu S Z 2010 Acta Phys. Sin. 59 1333 (in Chinese) [张斌, 张浩佳, 杨秋红, 陆神洲 2010 物理学报 59 1333]

    [13]

    Ghrib M, Ouertania R, Gaidia M 2012 Appl. Surf. Sci. 258 4995

    [14]

    Qin F F, Zhang H M, Wang C X, Guo C, Zhang J J 2014 Acta Phys. Sin. 63 198802 (in Chinese) [秦飞飞, 张海明, 王彩霞, 郭聪, 张晶晶 2014 物理学报 63 198802]

    [15]

    Xu W L, Zheng M J, Wu S, Shen W Z 2004 Appl. Phys. Lett. 85 4364

    [16]

    Liu J, Liu S, Zhou H H, Xie C J, Huang Z Y, Fu C P, Kuang Y F 2014 Thin Solid Films 552 75

    [17]

    Du Y, Cai W L, Mo C M, Chen J, Zhang L D, Zhu X G 1999 Appl. Phys. Lett. 74 2951

    [18]

    Sun X Y, Xu F Q, Li Z M, Zhang W H 2006 J. Lumin. 121 588

    [19]

    Huang G S, Wu X L, Mei Y F, Shao X F, Siu G G 2003 J. Appl. Phys. 93 582

    [20]

    Li Z J, Huang K L 2007 J. Lumin. 127 435

    [21]

    Khan G G, Singh A K, Mandal K 2013 J. Lumin. 134 772

    [22]

    Fang D, Li L C, Xu W L, Wang Y L, Jiang M, Guo X Q, Liu X 2014 Sci. Engineer. B 179 71

    [23]

    Yamamoto Y, Baba N, Tajima S 1981 Nature 289 572

    [24]

    Li Y, Li G H, Meng G W, Zhang L D, Phillipp F 2001 J. Phys. Condens. Matter 13 2691

    [25]

    Huang G S, Wu X L, Yang L W, Shao X F, Siu G G, Chu P K 2005 Appl. Phys. A: Mater. Sci. Process 81 1345

    [26]

    Vrublevsky I, Chernyakova K, Ispas A, Bund A, Gaponik N, Dubavik A 2011 J. Lumin. 131 938

    [27]

    Rauf A, Mehmood M, Ahmed M, Hasan M, Aslam M 2010 J. Lumin. 130 792

    [28]

    Chen W, Tang H G, Shi C S, Deng J, Shi J Y, Zhou Y X, Xia S D, Wang Y X, Yin S T 1995 Appl. Phys. Lett. 67 317

    [29]

    Draeger B G, Summers G P 1979 Phys. Rev. B 19 1172

    [30]

    Fu G S, Wang X Z, Lu W B, Dai W L, Li X K, Yu W 2012 Chin. Phys. B 21 107802

    [31]

    Yang X B, Li H J, Bi Q Y, Cheng Y, Tang Q, Xu J 2008 J. Appl. Phys. 104 123112

  • [1] 潘军廷, 张宏. 极化电场对可激发介质中螺旋波的控制. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191934
    [2] 徐贤达, 赵磊, 孙伟峰. 石墨烯纳米网电导特性的能带机理第一原理. 物理学报, 2020, 69(4): 047101. doi: 10.7498/aps.69.20190657
    [3] 赵建宁, 刘冬欢, 魏东, 尚新春. 考虑界面接触热阻的一维复合结构的热整流机理. 物理学报, 2020, 69(5): 056501. doi: 10.7498/aps.69.20191409
    [4] 张雅男, 詹楠, 邓玲玲, 陈淑芬. 利用银纳米立方增强效率的多层溶液加工白光有机发光二极管. 物理学报, 2020, 69(4): 047801. doi: 10.7498/aps.69.20191526
    [5] 刘丽, 刘杰, 曾健, 翟鹏飞, 张胜霞, 徐丽君, 胡培培, 李宗臻, 艾文思. 快重离子辐照对YBa2Cu3O7-δ薄膜微观结构及载流特性的影响. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191914
  • 引用本文:
    Citation:
计量
  • 文章访问数:  472
  • PDF下载量:  498
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-24
  • 修回日期:  2014-08-25
  • 刊出日期:  2014-12-20

多孔氧化铝薄膜的光致发光起源: 三种缺陷中心

  • 1. 新疆大学物理科学与技术学院, 乌鲁木齐 830046
    基金项目: 

    国家自然科学基金(批准号: 11065009)和新疆研究生科研创新项目(批准号: XJGRI2014014)资助的课题.

摘要: 在草酸溶液中用二次阳极氧化法制备了纳米多孔氧化铝薄膜, 分析了制备过程中氧化铝薄膜中缺陷的形成机理. 场发射电子显微镜给出了薄膜的表面形貌和结构. X 射线色散能谱和傅里叶红外透射光谱测试表明, 进入薄膜中的草酸杂质加热到500 ℃未全部分解. 对多孔氧化铝薄膜的光致发光PL光谱做了高斯拟合, 结合测试结果和薄膜中的缺陷分析指出: 多孔氧化铝薄膜的发光由F+, F和草酸杂质相关缺陷引起, 对应发光中心分别在402, 433, 475 nm处, 并提出F中心起主导作用. 对不同草酸浓度中制备的多孔氧化铝薄膜的PL光谱讨论指出: 随草酸浓度增加, 三种发光中心的峰位不会发生变化, 但相对强度发生改变, F+中心和F中心减少, 草酸杂质相关发光中心增加, PL 峰红移. 最后提出通过控制草酸浓度来控制多孔氧化铝薄膜中的草酸杂质. 此研究将对多孔氧化铝薄膜发光起源和机理有更深入的理解, 同时也为多孔氧化铝薄膜的制备提供一种全新的思路.

English Abstract

参考文献 (31)

目录

    /

    返回文章
    返回