搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于蚯蚓背孔射流的仿生射流表面减阻性能研究

谷云庆 牟介刚 代东顺 郑水华 蒋兰芳 吴登昊 任芸 刘福庆

基于蚯蚓背孔射流的仿生射流表面减阻性能研究

谷云庆, 牟介刚, 代东顺, 郑水华, 蒋兰芳, 吴登昊, 任芸, 刘福庆
PDF
导出引用
导出核心图
  • 为了减小流体对固体壁面的阻力, 基于蚯蚓生物学特征, 对蚯蚓背孔射流特性进行分析, 建立仿蚯蚓背孔射流的仿生射流表面计算模型, 采用SST k-ω 湍流模型对仿生射流表面的减阻特性进行数值模拟, 同时对数值模拟结果进行实验验证, 并以此研究了仿蚯蚓背孔射流表面的减阻机理.结果表明, 在一定条件下, 仿蚯蚓背孔射流的仿生射流表面具有较好的减阻效果; 在同一射流方向角下, 随着射流速度的增加, 减阻率逐渐增大; 在同一射流速度下, 随着射流方向角的增加, 减阻率呈先减小后增大的变化趋势; 数值模拟与实验均在射流速度为1 m·s-1、射流方向角为-30°时达到最大, 分别为8.69%, 7.86%; 射流表面改变了原有光滑壁面的边界层结构, 对壁面边界层进行了有效的控制, 减小了壁面的剪应力, 降低了壁面边界层的速度.
    • 基金项目: 国家自然科学基金(批准号: 51275102, 51305399, 51476144)资助的课题.
    [1]

    Ren L Q, Li X J 2013 Sci. China: Technol. Sci. 56 884

    [2]

    Chirende B, Li J Q, Wen L G, Simalenga T E 2010 Sci. China: Technol. Sci. 53 2960

    [3]

    Gu Y Q, Zhao G, Zheng J X, Li Z Y, Liu W B, Muhammad F K 2014 Ocean Eng. 81 50

    [4]

    Koeltzsch K, Dinkelacker A, Grundmann R 2002 Exp. Fluids 33 346

    [5]

    Huang Q G, Pan G, Song B W 2014 Acta Phys. Sin. 63 054701 (in Chinese) [黄桥高, 潘光, 宋保维 2014 物理学报 63 054701]

    [6]

    Ren L Q, Liang Y H 2009 Sci. China E: Technol. Sci. 52 2791

    [7]

    Wang L, Cai W H, Li F C 2014 Chin. Phys. B 23 034701

    [8]

    Karthikeyan C, Krishnan R, Princy S A 2008 J. Bionic Eng. 5 25

    [9]

    Lu Y X 2004 J. Bionic Eng. 1 1

    [10]

    Ren L Q, Wang S J, Tian X M, Han Z W, Yan L N, Qiu Z M 2007 J. Bionic Eng. 4 33

    [11]

    Wang B, Wang J D, Chen D R 2014 Acta Phys. Sin. 63 074702 (in Chinese) [王宝, 汪家道, 陈大融 2014 物理学报 63 074702]

    [12]

    Lang S S, Geng X G, Zang D Y 2014 Acta Phys. Sin. 63 084704 (in Chinese) [郎莎莎, 耿兴国, 臧渡洋 2014 物理学报 63 084704]

    [13]

    Wang Y H, Zhang C C, Wang J, Shi L, Zhang X P, Ren L Q 2012 J. Jilin Univ. Eng. (Tech. Ed.) 42 1442 (in Chinese) [王永华, 张成春, 王晶, 石磊, 张雪鹏, 任露泉 2012 吉林大学学报 (工学版) 42 1442]

    [14]

    Liu F, Shi W P, Ren L Q 2010 Chin. J. Theor. Appl. Mech. 42 951 (in Chinese) [刘芳, 施卫平, 任露泉 2010 力学学报 42 951]

    [15]

    Ren L Q, Han Z W, Li J Q, Tong J 2002 J. Terramech. 39 221

    [16]

    Ren L Q, Han Z W, Li J Q, Tong J 2006 Soil Tillage Res. 85 1

    [17]

    Gu Y Q, Zhao G, Liu H, Zheng J X, Ru J, Liu M M, Chatto A R, Wang C G 2013 J. Cent. South Univ. 20 3065

    [18]

    Mezoff S, Papastathis N, Takesian A, Trimmer B A 2004 J. Exp. Biol. 207 3043

    [19]

    Chernousko F L 2005 Appl. Math. Comput. 164 415

    [20]

    Kim B, Lee M G, Lee Y P, Kim Y, Lee G 2006 Sens. Actuators A: Phys. 125 429

    [21]

    Ren L Q 2009 Sci. China E: Technol. Sci. 52 273

    [22]

    Shelley T Ren L Q, Tong J, Li J Q, Chen B C 2001 J. Agric. Eng. Res. 79 239

    [23]

    Zu Y Q, Yan Y Y 2006 J. Bionic Eng. 3 179

    [24]

    Yan Y Y, Zu Y Q, Ren L Q, Li J Q 2007 Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. 221 1201

    [25]

    Tong J, Moayad B Z, Ren L Q, Chen B C 2004 Int. Agric. Eng. J. 13 71

    [26]

    Accoto D, Castrataro P, Dario P 2004 J. Theoret. Biol. 230 49

    [27]

    Liu G M, Li J Q, Zou M, Li Y W, Tian X M 2008 Trans. Chin. Soc. Agric. Engineer. 24 62 (in Chinese) [刘国敏, 李建桥, 邹猛, 李因武, 田喜梅 2008 农业工程学报 24 62]

    [28]

    Yan Y Y, Ren L Q, Li J Q 2006 Int. J. Des. Nat. 1 135

    [29]

    Catalano P, Amato M 2003 Aerosp. Sci. Technol. 7 493

    [30]

    You Y C, Buanga B, Hannemann V, Ldeke H 2012 Chin. J. Aeronaut 25 325

    [31]

    Menter F R 1994 AIAA J. 32 1598

    [32]

    Xiong J B, Koshizuka S, Sakai M 2011 Nucl. Eng. Des. 241 3190

    [33]

    EÇa L, Hoekstra M 2011 Compu. Fluids 40 299

    [34]

    Gu Y Q, Zhao G, Zheng J X, Zhang S, Ru J, Liu M M, Yao J J 2012 J. Xi'an Jiaotong Univ. 46 71 (in Chinese) [谷云庆, 赵刚, 郑金兴, 张殊, 汝晶, 刘明明, 姚建均 2012 西安交通大学学报 46 71]

    [35]

    Gu Y Q, Mou J G, Zhao G, Wang F 2014 J. Huazhong Univ. Sci. Technol. (Nutural Science Edition) 42 22 (in Chinese) [谷云庆, 牟介刚, 赵刚, 王飞 2014 华中科技大学学报(自然科学版) 42 22]

    [36]

    Gu Y Q, Ru J, Zhao G, Li Z Y, Liu W B, Muhammad F K 2014 Appl. Mech. Mater. 461 725

    [37]

    Wang J, Zhang C C, Ren L Q, Han Z W 2011 J. China Ordnance 7 59

  • [1]

    Ren L Q, Li X J 2013 Sci. China: Technol. Sci. 56 884

    [2]

    Chirende B, Li J Q, Wen L G, Simalenga T E 2010 Sci. China: Technol. Sci. 53 2960

    [3]

    Gu Y Q, Zhao G, Zheng J X, Li Z Y, Liu W B, Muhammad F K 2014 Ocean Eng. 81 50

    [4]

    Koeltzsch K, Dinkelacker A, Grundmann R 2002 Exp. Fluids 33 346

    [5]

    Huang Q G, Pan G, Song B W 2014 Acta Phys. Sin. 63 054701 (in Chinese) [黄桥高, 潘光, 宋保维 2014 物理学报 63 054701]

    [6]

    Ren L Q, Liang Y H 2009 Sci. China E: Technol. Sci. 52 2791

    [7]

    Wang L, Cai W H, Li F C 2014 Chin. Phys. B 23 034701

    [8]

    Karthikeyan C, Krishnan R, Princy S A 2008 J. Bionic Eng. 5 25

    [9]

    Lu Y X 2004 J. Bionic Eng. 1 1

    [10]

    Ren L Q, Wang S J, Tian X M, Han Z W, Yan L N, Qiu Z M 2007 J. Bionic Eng. 4 33

    [11]

    Wang B, Wang J D, Chen D R 2014 Acta Phys. Sin. 63 074702 (in Chinese) [王宝, 汪家道, 陈大融 2014 物理学报 63 074702]

    [12]

    Lang S S, Geng X G, Zang D Y 2014 Acta Phys. Sin. 63 084704 (in Chinese) [郎莎莎, 耿兴国, 臧渡洋 2014 物理学报 63 084704]

    [13]

    Wang Y H, Zhang C C, Wang J, Shi L, Zhang X P, Ren L Q 2012 J. Jilin Univ. Eng. (Tech. Ed.) 42 1442 (in Chinese) [王永华, 张成春, 王晶, 石磊, 张雪鹏, 任露泉 2012 吉林大学学报 (工学版) 42 1442]

    [14]

    Liu F, Shi W P, Ren L Q 2010 Chin. J. Theor. Appl. Mech. 42 951 (in Chinese) [刘芳, 施卫平, 任露泉 2010 力学学报 42 951]

    [15]

    Ren L Q, Han Z W, Li J Q, Tong J 2002 J. Terramech. 39 221

    [16]

    Ren L Q, Han Z W, Li J Q, Tong J 2006 Soil Tillage Res. 85 1

    [17]

    Gu Y Q, Zhao G, Liu H, Zheng J X, Ru J, Liu M M, Chatto A R, Wang C G 2013 J. Cent. South Univ. 20 3065

    [18]

    Mezoff S, Papastathis N, Takesian A, Trimmer B A 2004 J. Exp. Biol. 207 3043

    [19]

    Chernousko F L 2005 Appl. Math. Comput. 164 415

    [20]

    Kim B, Lee M G, Lee Y P, Kim Y, Lee G 2006 Sens. Actuators A: Phys. 125 429

    [21]

    Ren L Q 2009 Sci. China E: Technol. Sci. 52 273

    [22]

    Shelley T Ren L Q, Tong J, Li J Q, Chen B C 2001 J. Agric. Eng. Res. 79 239

    [23]

    Zu Y Q, Yan Y Y 2006 J. Bionic Eng. 3 179

    [24]

    Yan Y Y, Zu Y Q, Ren L Q, Li J Q 2007 Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. 221 1201

    [25]

    Tong J, Moayad B Z, Ren L Q, Chen B C 2004 Int. Agric. Eng. J. 13 71

    [26]

    Accoto D, Castrataro P, Dario P 2004 J. Theoret. Biol. 230 49

    [27]

    Liu G M, Li J Q, Zou M, Li Y W, Tian X M 2008 Trans. Chin. Soc. Agric. Engineer. 24 62 (in Chinese) [刘国敏, 李建桥, 邹猛, 李因武, 田喜梅 2008 农业工程学报 24 62]

    [28]

    Yan Y Y, Ren L Q, Li J Q 2006 Int. J. Des. Nat. 1 135

    [29]

    Catalano P, Amato M 2003 Aerosp. Sci. Technol. 7 493

    [30]

    You Y C, Buanga B, Hannemann V, Ldeke H 2012 Chin. J. Aeronaut 25 325

    [31]

    Menter F R 1994 AIAA J. 32 1598

    [32]

    Xiong J B, Koshizuka S, Sakai M 2011 Nucl. Eng. Des. 241 3190

    [33]

    EÇa L, Hoekstra M 2011 Compu. Fluids 40 299

    [34]

    Gu Y Q, Zhao G, Zheng J X, Zhang S, Ru J, Liu M M, Yao J J 2012 J. Xi'an Jiaotong Univ. 46 71 (in Chinese) [谷云庆, 赵刚, 郑金兴, 张殊, 汝晶, 刘明明, 姚建均 2012 西安交通大学学报 46 71]

    [35]

    Gu Y Q, Mou J G, Zhao G, Wang F 2014 J. Huazhong Univ. Sci. Technol. (Nutural Science Edition) 42 22 (in Chinese) [谷云庆, 牟介刚, 赵刚, 王飞 2014 华中科技大学学报(自然科学版) 42 22]

    [36]

    Gu Y Q, Ru J, Zhao G, Li Z Y, Liu W B, Muhammad F K 2014 Appl. Mech. Mater. 461 725

    [37]

    Wang J, Zhang C C, Ren L Q, Han Z W 2011 J. China Ordnance 7 59

  • [1] 李芳, 赵刚, 刘维新, 张殊, 毕红时. 仿生射流孔形状减阻性能数值模拟及实验研究. 物理学报, 2015, 64(3): 034703. doi: 10.7498/aps.64.034703
    [2] 张娅, 潘光, 黄桥高. 疏水表面减阻的格子Boltzmann方法数值模拟. 物理学报, 2015, 64(18): 184702. doi: 10.7498/aps.64.184702
    [3] 陆昌根, 沈露予. 无限薄平板边界层前缘感受性过程的数值研究. 物理学报, 2016, 65(19): 194701. doi: 10.7498/aps.65.194701
    [4] 刘强, 罗振兵, 邓雄, 杨升科, 蒋浩. 合成冷/热射流控制超声速边界层流动稳定性. 物理学报, 2017, 66(23): 234701. doi: 10.7498/aps.66.234701
    [5] 李山, 姜楠, 杨绍琼. 正弦波沟槽对湍流边界层相干结构影响的TR-PIV实验研究. 物理学报, 2019, 68(7): 074702. doi: 10.7498/aps.68.20181875
    [6] Chaoqun Liu, 陈林, 唐登斌. 转捩边界层中流向条纹的新特性. 物理学报, 2011, 60(9): 094702. doi: 10.7498/aps.60.094702
    [7] 宋保维, 郭云鹤, 罗荘竹, 徐向辉, 王鹰. 疏水表面减阻环带实验研究. 物理学报, 2013, 62(15): 154701. doi: 10.7498/aps.62.154701
    [8] 管新蕾, 王维, 姜楠. 高聚物减阻溶液对壁湍流输运过程的影响. 物理学报, 2015, 64(9): 094703. doi: 10.7498/aps.64.094703
    [9] 刘云龙, 张阿漫, 王诗平, 田昭丽. 基于边界元法的近平板圆孔气泡动力学行为研究. 物理学报, 2013, 62(14): 144703. doi: 10.7498/aps.62.144703
    [10] 沙莎, 陈志华, 张庆兵. 激波与SF6球形气泡相互作用的数值研究. 物理学报, 2015, 64(1): 015201. doi: 10.7498/aps.64.015201
    [11] 张寅超, 张改霞, 赵曰峰, 赵培涛. 激光雷达白天探测大气边界层气溶胶. 物理学报, 2008, 57(11): 7390-7395. doi: 10.7498/aps.57.7390
    [12] 李存标, 龚安龙, 李睿劬. 平板边界层转捩过程中低频信号的产生. 物理学报, 2002, 51(5): 1068-1074. doi: 10.7498/aps.51.1068
    [13] 李存标, 李睿劬. 平板边界层中湍流的发生与混沌动力学之间的联系. 物理学报, 2002, 51(8): 1743-1749. doi: 10.7498/aps.51.1743
    [14] 高鹏, 耿兴国, 欧修龙, 薛文辉. 人工构建二维准晶复合结构的减阻特性研究. 物理学报, 2009, 58(1): 421-426. doi: 10.7498/aps.58.421
    [15] 梅栋杰, 范宝春, 黄乐萍, 董刚. 槽道湍流的展向振荡电磁力壁面减阻. 物理学报, 2010, 59(10): 6786-6792. doi: 10.7498/aps.59.6786
    [16] 宋保维, 任峰, 胡海豹, 郭云鹤. 表面张力对疏水微结构表面减阻的影响. 物理学报, 2014, 63(5): 054708. doi: 10.7498/aps.63.054708
    [17] 周剑宏, 童宝宏, 王伟, 苏家磊. 油滴撞击油膜层内气泡的变形与破裂过程的数值模拟. 物理学报, 2018, 67(11): 114701. doi: 10.7498/aps.67.20180133
    [18] 郭恒, 张晓宁, 聂秋月, 李和平, 曾实, 李志辉. 亚大气压六相交流电弧放电等离子体射流特性数值模拟. 物理学报, 2018, 67(5): 055201. doi: 10.7498/aps.67.20172557
    [19] 梁刚涛, 郭亚丽, 沈胜强. 液滴撞击液膜的射流与水花形成机理分析. 物理学报, 2013, 62(2): 024705. doi: 10.7498/aps.62.024705
    [20] 沙莎, 陈志华, 薛大文. 激波冲击R22重气柱所导致的射流与混合研究 . 物理学报, 2013, 62(14): 144701. doi: 10.7498/aps.62.144701
  • 引用本文:
    Citation:
计量
  • 文章访问数:  918
  • PDF下载量:  454
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-05-13
  • 修回日期:  2014-06-23
  • 刊出日期:  2015-01-05

基于蚯蚓背孔射流的仿生射流表面减阻性能研究

  • 1. 浙江工业大学机械工程学院, 杭州 310014;
  • 2. 浙江工业大学之江学院, 杭州 310024
    基金项目: 

    国家自然科学基金(批准号: 51275102, 51305399, 51476144)资助的课题.

摘要: 为了减小流体对固体壁面的阻力, 基于蚯蚓生物学特征, 对蚯蚓背孔射流特性进行分析, 建立仿蚯蚓背孔射流的仿生射流表面计算模型, 采用SST k-ω 湍流模型对仿生射流表面的减阻特性进行数值模拟, 同时对数值模拟结果进行实验验证, 并以此研究了仿蚯蚓背孔射流表面的减阻机理.结果表明, 在一定条件下, 仿蚯蚓背孔射流的仿生射流表面具有较好的减阻效果; 在同一射流方向角下, 随着射流速度的增加, 减阻率逐渐增大; 在同一射流速度下, 随着射流方向角的增加, 减阻率呈先减小后增大的变化趋势; 数值模拟与实验均在射流速度为1 m·s-1、射流方向角为-30°时达到最大, 分别为8.69%, 7.86%; 射流表面改变了原有光滑壁面的边界层结构, 对壁面边界层进行了有效的控制, 减小了壁面的剪应力, 降低了壁面边界层的速度.

English Abstract

参考文献 (37)

目录

    /

    返回文章
    返回