搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

度关联无标度网络上的有倾向随机行走

胡耀光 王圣军 金涛 屈世显

度关联无标度网络上的有倾向随机行走

胡耀光, 王圣军, 金涛, 屈世显
PDF
导出引用
导出核心图
  • 有倾向随机行走是研究网络上数据包路由策略的有效方法. 由于许多真实技术网络包括互联网都具有负的度关联特征, 因此本文研究这种网络上的有倾向随机行走性质. 研究表明: 在负关联网络上粒子可以在连接度较大的节点上均匀分布, 而连接度小的节点上粒子较少; 负关联网络上随机行走的速度比非关联网络更快; 找到了负关联网络上的最佳倾向性系数, 在此情况下负关联网络上随机行走的速度远快于非关联网络. 负关联网络既可以利用度小的节点容纳粒子, 又可以利用度大的节点快速传输, 这是负关联网络上高行走效率产生的机制.
    • 基金项目: 国家自然科学基金(批准号: 10875076, 11305098, 11147020)和中央高校基本科研业务费专项资金(批准号: GK201302008)资助的课题.
    [1]

    Wang K, Zhou S Y, Zhang Y F, Pei W J, Liu Q 2011 Acta Phys. Sin. 60 118903 (in Chinese) [王开, 周思源, 张毅峰, 裴文江, 刘茜 2011 物理学报 60 118903]

    [2]

    Jia X, Hong J S, Yang H C, Yang C, Shi X H, Hu J Q 2014 Chin. Phys. B 23 076401

    [3]

    Barabási A L, Albert R 1999 Science 286 509

    [4]

    Wang D L, Yu Z G, Anh V 2012 Chin. Phys. B 21 080504

    [5]

    Fronczak A, Fronczak P 2009 Phys. Rev. E 80 016107

    [6]

    Vazquez A, Moreno Y 2003 Phys. Rev. E 67 015101c

    [7]

    Pastor-Satorras R, Vazquezand A, Vespignani A 2001 Phys. Rev. Lett. 87 258701

    [8]

    Tadic B, Thurnerb S 2004 Physica A 332 566

    [9]

    Wu W, Jiang F M, Zeng J B 2014 Acta Phys. Sin. 63 048202 (in Chinese) [吴伟, 蒋方明, 曾建邦 2014 物理学报 63 048202]

    [10]

    Song L J, Tang G, Zhang Y W, Han K, Xu Z P, Xia H, Hao D P, Li Y 2014 Chin. Phys. B 23 010503

    [11]

    Wang Y Q, Yang X Y 2013 Chin. Phys. B 22 010509

    [12]

    Liu J, Bao J D 2013 Chin. Phys. Lett. 30 020202

    [13]

    Jiang Z Y, Wang H, Gao C 2011 Acta Phys. Sin. 60 058903 (in Chinese) [姜志远, 王晖, 高超 2011 物理学报 60 058903]

    [14]

    Li S B, Lou L L, Chen R X, Hong L 2014 Acta Phys. Sin. 63 028901 (in Chinese) [李世宝, 娄琳琳, 陈瑞祥, 洪利 2014 物理学报 63 028901]

    [15]

    Liu G, Li Y S 2012 Acta Phys. Sin. 61 248901 (in Chinese) [刘刚, 李永树 2012 物理学报 61 248901]

    [16]

    Noh J D, Rieger H 2004 Phys. Rev. Lett. 92 118701

    [17]

    Wang S J, Wu A C, Wu Z X, Xu X J, Wang Y H 2007 Phys. Rev. E 75 046113

    [18]

    Newman M E J 2002 Phys. Rev. Lett. 89 208701

    [19]

    Chen Q H, Shi D H 2003 Physica A 335 240

    [20]

    Wang W X, Wang B H, Yin C Y, Xie Y B, Zhou T 2006 Phys. Rev. E 73 026111

  • [1]

    Wang K, Zhou S Y, Zhang Y F, Pei W J, Liu Q 2011 Acta Phys. Sin. 60 118903 (in Chinese) [王开, 周思源, 张毅峰, 裴文江, 刘茜 2011 物理学报 60 118903]

    [2]

    Jia X, Hong J S, Yang H C, Yang C, Shi X H, Hu J Q 2014 Chin. Phys. B 23 076401

    [3]

    Barabási A L, Albert R 1999 Science 286 509

    [4]

    Wang D L, Yu Z G, Anh V 2012 Chin. Phys. B 21 080504

    [5]

    Fronczak A, Fronczak P 2009 Phys. Rev. E 80 016107

    [6]

    Vazquez A, Moreno Y 2003 Phys. Rev. E 67 015101c

    [7]

    Pastor-Satorras R, Vazquezand A, Vespignani A 2001 Phys. Rev. Lett. 87 258701

    [8]

    Tadic B, Thurnerb S 2004 Physica A 332 566

    [9]

    Wu W, Jiang F M, Zeng J B 2014 Acta Phys. Sin. 63 048202 (in Chinese) [吴伟, 蒋方明, 曾建邦 2014 物理学报 63 048202]

    [10]

    Song L J, Tang G, Zhang Y W, Han K, Xu Z P, Xia H, Hao D P, Li Y 2014 Chin. Phys. B 23 010503

    [11]

    Wang Y Q, Yang X Y 2013 Chin. Phys. B 22 010509

    [12]

    Liu J, Bao J D 2013 Chin. Phys. Lett. 30 020202

    [13]

    Jiang Z Y, Wang H, Gao C 2011 Acta Phys. Sin. 60 058903 (in Chinese) [姜志远, 王晖, 高超 2011 物理学报 60 058903]

    [14]

    Li S B, Lou L L, Chen R X, Hong L 2014 Acta Phys. Sin. 63 028901 (in Chinese) [李世宝, 娄琳琳, 陈瑞祥, 洪利 2014 物理学报 63 028901]

    [15]

    Liu G, Li Y S 2012 Acta Phys. Sin. 61 248901 (in Chinese) [刘刚, 李永树 2012 物理学报 61 248901]

    [16]

    Noh J D, Rieger H 2004 Phys. Rev. Lett. 92 118701

    [17]

    Wang S J, Wu A C, Wu Z X, Xu X J, Wang Y H 2007 Phys. Rev. E 75 046113

    [18]

    Newman M E J 2002 Phys. Rev. Lett. 89 208701

    [19]

    Chen Q H, Shi D H 2003 Physica A 335 240

    [20]

    Wang W X, Wang B H, Yin C Y, Xie Y B, Zhou T 2006 Phys. Rev. E 73 026111

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1078
  • PDF下载量:  733
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-19
  • 修回日期:  2014-09-09
  • 刊出日期:  2015-01-05

度关联无标度网络上的有倾向随机行走

  • 1. 陕西师范大学物理学与信息技术学院, 理论与计算物理研究所, 西安 710062
    基金项目: 

    国家自然科学基金(批准号: 10875076, 11305098, 11147020)和中央高校基本科研业务费专项资金(批准号: GK201302008)资助的课题.

摘要: 有倾向随机行走是研究网络上数据包路由策略的有效方法. 由于许多真实技术网络包括互联网都具有负的度关联特征, 因此本文研究这种网络上的有倾向随机行走性质. 研究表明: 在负关联网络上粒子可以在连接度较大的节点上均匀分布, 而连接度小的节点上粒子较少; 负关联网络上随机行走的速度比非关联网络更快; 找到了负关联网络上的最佳倾向性系数, 在此情况下负关联网络上随机行走的速度远快于非关联网络. 负关联网络既可以利用度小的节点容纳粒子, 又可以利用度大的节点快速传输, 这是负关联网络上高行走效率产生的机制.

English Abstract

参考文献 (20)

目录

    /

    返回文章
    返回