搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

预先合成量子点组装制备高效量子点太阳电池

李文杰 钟新华

预先合成量子点组装制备高效量子点太阳电池

李文杰, 钟新华
PDF
导出引用
导出核心图
  • 量子点太阳电池现已成为极具潜力的“第三代” 光伏器件, 其优点体现在材料成本低廉, 制备工艺简便, 以及其敏化剂特有的多激子效应(MEG) 潜能和吸光范围可方便调节等方面. 但是与染料分子敏化剂相比, 量子点敏化剂粒径更大、表面缺乏具有与TiO2结合的官能团, 这导致其在TiO2介孔中渗透阻力大、难以在TiO2表面吸附沉积, 所以量子点沉积手段在电池组装过程中尤为重要. 本文综述了电池组装过程中量子点的沉积方法, 分类阐述了直接生长量子点方法: 化学浴沉积(CBD)和连续离子层吸附生长(SILAR), 以及采用预先合成量子点的沉积方法: 连接分子辅助法(LA)、直接吸附法(DA)和电泳沉积(EPD)方法, 陈述了各沉积方法的发展过程及相应电池性能的改善, 对比了这些沉积方法的优缺点. 突出介绍了预先合成量子点的沉积方法, 特别是近年来不断优化而凸显优势的连接分子辅助法(LA). 总结了此方法快速、均匀沉积以及实现器件高性能的特点, 介绍了此方法沉积表面缺陷更少、结构更完善、材料更“绿色化”的量子点敏化剂的最新研究成果.
    • 基金项目: 国家自然科学基金(批准号: 21175043) 和上海市科委 (批准号: 11JC1403100, 12ZR1407700)资助的课题.
    [1]

    Kamat P V 2013 J. Phys. Chem. Lett. 4 908

    [2]

    Kamat P V, Tvrdy K, Baker D R, Radich J G 2010 Chem. Rev. 110 6664

    [3]

    Bai Y, Mora-Sero I, De Angelis F, Bisquert J, Wang P 2014 Chem. Rev. 114 10095

    [4]

    Kramer I J, Sargent E H 2014 Chem. Rev. 114 863

    [5]

    Hodes G 2008 J. Phys. Chem. C 112 17778

    [6]

    Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S, Seok S I 2014 Nat. Mater. 13 897

    [7]

    Hetsch F, Xu X Q, Wang H K, Kershaw S V, Rogach A L 2011 J. Phys. Chem. Lett. 2 1879

    [8]

    Kamat P V 2008 J. Phys. Chem. C 112 18737

    [9]

    Kramer I J, Sargent E H 2011 ACS Nano 5 8506

    [10]

    Tada H, Fujishima M, Kobayashi H 2011 Chem. Soc. Rev. 40 4232

    [11]

    Kershaw S V, Susha A S, Rogach A L 2013 Chem. Soc. Rev. 42 3033

    [12]

    Ruhle S, Shalom M, Zaban A 2010 Chem. Phys. Chem. 11 2290

    [13]

    Tang J, Sargent E H 2011 Adv. Mater. 23 12

    [14]

    Semonin O E, Luther J M, Choi S, Chen H Y, Gao J, Nozik A J, Beard M C 2011 Science 334 1530

    [15]

    Yella A, Lee H W, Tsao H N, Yi C, Chandiran A K, Nazeeruddin M K, Diau E W, Yeh C Y, Zakeeruddin S M, Grätzel M 2011 Science 334 629

    [16]

    Pan Z, Mora-Sero I, Shen Q, Zhang H, Li Y, Zhao K, Wang J, Zhong X, Bisquert J 2014 J. Am. Chem. Soc. 136 9203

    [17]

    Hod I, Zaban A 2014 Langmuir 30 7264

    [18]

    Kamat P V, Christians J A, Radich J G 2014 Langmuir 30 5716

    [19]

    Corer S, Hodes G 1994 J. Phys. Chem. 98 5338

    [20]

    Yochelis S, Hodes G 2004 Chem. Mater. 16 2740

    [21]

    Hotchandani S, Kamat P V 1992 J. Phys. Chem. 96 6834

    [22]

    Liu D, Kamat P V 1993 J. Phys. Chem. 97 10769

    [23]

    Nasr C, Kamat P V, Hotchandani S 1997 J. Electroanal. Chem. 420 201

    [24]

    Niitsoo O, Sarkar S K, Pejoux C, Ruhle S, Cahen D, Hodes G 2006 J. Photoch. Photobio. A 181 306

    [25]

    Lee Y L, Lo Y S 2009 Adv. Funct. Mater. 19 604

    [26]

    Lin S C, Lee Y L, Chang C H, Shen Y J, Yang Y M 2007 Appl. Phys. Lett. 90 143517

    [27]

    Fan S Q, Kim D, Kim J J, Jung D W, Kang S O, Ko J 2009 Electrochem. Commun. 11 1337

    [28]

    Yu X Y, Lei B X, Kuang D B, Su C Y 2011 Chem. Sci. 2 1396

    [29]

    Yan K Y, Chen W, Yang S H 2013 J. Phys. Chem. C 117 92

    [30]

    Sun W T, Yu Y, Pan H Y, Gao X F, Chen Q, Peng L M 2008 J. Am. Chem. Soc. 130 1124

    [31]

    Vogel R, Hoyer P, Weller H 1994 J. Phys. Chem. 98 3183

    [32]

    Park S, Clark B L, Keszler D A, Bender J P, Wager J F, Reynolds T A, Herman G S 2002 Science 297 65

    [33]

    Plass R, Pelet S, Krueger J, Grätzel M, Bach U 2002 J. Phys. Chem. B 106 7578

    [34]

    Lee H J, Chen P, Moon S J, Sauvage F, Sivula K, Bessho T, Gamelin D R, Comte P, Zakeeruddin S M, Seok S I, Grätzel M, Nazeeruddin M K 2009 Langmuir 25 602

    [35]

    Lee H, Wang M, Chen P, Gamelin D R, Zakeeruddin S M, Grätzel M, Nazeeruddin M K 2009 Nano Lett. 9 4221

    [36]

    Li L, Yang X, Gao J, Tian H, Zhao J, Hagfeldt A, Sun L 2011 J. Am. Chem. Soc. 133 8458

    [37]

    Baker D R, Kamat P V 2009 Adv. Funct. Mater. 19 805

    [38]

    Lee H J, Bang J, Park J, Kim S, Park S M 2010 Chem. Mater. 22 5636

    [39]

    Gonzalez-Pedro V, Xu X, Mora-Sero I, Bisquert J 2010 ACS Nano 4 5783

    [40]

    Santra P K, Kamat P V 2012 J. Am. Chem. Soc. 134 2508

    [41]

    Watson D F 2010 J. Phys. Chem. Lett. 1 2299

    [42]

    Alberoa J, Clifforda J N, Palomaresa E 2014 Coordin.Chem. Rev. 263 53

    [43]

    Zaban A, Micic O I, Gregg B A, Nozik A J 1998 Langmuir 14 3153

    [44]

    Gimenez S, Mora-Sero I, Macor L, Guijarro N, Lana-Villarreal T, Gomez R, Diguna L J, Shen Q, Toyoda T, Bisquert J 2009 Nanotechnology 20 295204

    [45]

    Islam M A, Xia Y, Telesca D A, Steigerwald M L, Herman I P 2004 Chem. Mater. 16 49

    [46]

    Islam M A, Herman I P 2002 Appl. Phys. Lett. 80 3823

    [47]

    Smith N J, Emmett K J, Rosenthal S J 2008 Appl. Phys. Lett. 93 043504

    [48]

    Brown P, Kamat P V 2008 J. Am. Chem. Soc. 130 8890

    [49]

    Salant A, Shalom M, Hod I, Faust A, Zaban A, Banin U 2010 ACS Nano 4 5962

    [50]

    Santra P K, Nair P V, George Thomas K, Kamat P V 2013 J. Phys. Chem. Lett. 4 722

    [51]

    Yu X Y, Liao J Y, Qiu K Q, Kuang D B, Su C Y 2011 ACS Nano 5 9494

    [52]

    Mann J R, Watson D F 2007 Langmuir 23 10924

    [53]

    Lee Y L, Huang B M, Chien H T 2008 Chem. Mater. 20 6903

    [54]

    Kongkanand A, Tvrdy K, Takechi K, Kuno M, Kamat P V 2008 J. Am. Chem. Soc. 130 4007

    [55]

    Bang J H, Kamat P V 2009 ACS Nano 3 1467

    [56]

    Guijarro N, Lana-Villarreal T, Mora-Sero I, Bisquert J, Gomez R 2009 J. Phys. Chem. C 113 4208

    [57]

    Mora-Sero I, Gimenez S, Moehl T, Fabregat-Santiago F, Lana-Villareal T, Gomez R, Bisquert J 2008 Nanotechnology 19 424007

    [58]

    Colvin V L, Goldstein A N, Alivisatos A P 1992 J. Am. Chem. Soc. 114 5221

    [59]

    Bowen Katari J E, Colvin V L, Alivisatos A P 1994 J. Phys. Chem. 98 4109

    [60]

    Lawless D, Kapoor S, Meisel D 1995 J. Phys. Chem. 99 10329

    [61]

    Aldana J, Wang Y A, Peng X 2001 J. Am. Chem. Soc. 123 8844

    [62]

    Lee H J, Yum J H, Leventis H C, Zakeeruddin S M, Haque S A, Chen P, Seok S I, Grazel M, Nazeeruddin M K 2008 J. Phys. Chem. C 112 11600

    [63]

    Lee W, Kang S H, Min S K, Sung Y E, Han S H 2008 Electrochem. Commun. 10 1579

    [64]

    Leschkies K S, Divakar R, Basu J, Enache-Pommer E, Boercker J E, Carter C B, Kortshagen U R, Norris D J, Aydil E S 2007 Nano Lett. 7 1793

    [65]

    Hyun B R, Zhong Y W, Bartnik A C, Sun L, Abruna H D, Wise F W, Goodreau J D, Matthews J R, Leslie T M, Borrelli N F 2008 ACS Nano 2 2206

    [66]

    Lee W, Kang S H, Min S K, Sung Y E, Han S H 2008 Electrochem. Commun. 10 1579

    [67]

    Chen J, Lei W, Deng W Q 2011 Nanoscale 3 674

    [68]

    Chen J, Zhao D W, Song J L, Sun X W, Deng W Q, Liu X W, Lei W 2009 Electrochem. Commun. 11 2265

    [69]

    Sambur J B, Riha S C, Choi D, Parkinson B A 2010 Langmuir 26 4839

    [70]

    Zhang H, Cheng K, Hou Y M, Fang Z, Pan Z X, Wu W J, Hua J L, Zhong X H 2012 Chem. Commun. 48 11235

    [71]

    Liu L, Guo X, Li Y, Zhong X 2010 Inorg. Chem. 49 3768

    [72]

    Pan Z, Zhang H, Cheng K, Hou Y, Hua J, Zhong X 2012 ACS Nano 6 3982

    [73]

    Pan Z, Zhao K, Wang J, Zhang H, Feng Y, Zhong X 2013 ACS Nano 7 5215

    [74]

    Wang J, Mora-Sero I, Pan Z, Zhao K, Zhang H, Feng Y, Yang G, Zhong X, Bisquert J 2013 J. Am. Chem. Soc. 135 15913

    [75]

    Ma W, Luther J M, Zheng H, Wu Y, Alivisatos A P 2009 Nano Lett. 9 1699

    [76]

    Gonzalez-Pedro V, Sima C, Marzari G, Boix P P, Gimenez S, Shen Q, Dittrich T, Mora-Sero I 2013 Phys. Chem. Chem. Phys. 15 13835

    [77]

    Santra P K, Kamat P V 2013 J. Am. Chem. Soc. 135 877

    [78]

    Peter L M, Wijayantha K G U, Riley D J, Waggett J P 2003 J. Phys. Chem. B 107 8378

    [79]

    Ning Z J, Tian H N, Qin H Y, Zhang Q O, Agren H, Sun L C, Fu Y 2010 J. Phys. Chem. C 114 15184

    [80]

    Chang J Y, Su L F, Li C H, Chang C C, Lin J M 2012 Chem. Commun. 48 4848

    [81]

    Li T L, Lee Y L, Teng H 2012 Energy Environ. Sci. 5 5315

    [82]

    Hu X, Zhang Q, Huang X, Li D, Luo Y, Meng Q 2011 J. Mater. Chem. 21 15903

    [83]

    Luo J, Wei H, Huang Q, Hu X, Zhao H, Yu R, Li D, Luo Y, Meng Q 2013 Chem. Commun. 49 3881

    [84]

    McDaniel H, Fuke N, Makarov N S, Pietryga J M, Klimov V I 2013 Nat. Commun. 4 2887

    [85]

    McDaniel H, Fuke N, Pietryga J M, Klimov V I 2013 J. Phys. Chem. Lett. 4 355

    [86]

    Aldakov D, Lefrançois A, Reiss P 2013 J. Mater. Chem. C 1 3756

    [87]

    Allen P M, Bawendi M G 2008 J. Am. Chem. Soc. 130 9240

    [88]

    Booth M, Brown A P, Evans S D, Critchley K 2012 Chem. Mater. 24 2064

    [89]

    Qin L, Li D, Zhang Z, Wang K, Ding H, Xie R, Yang W 2012 Nanoscale 4 6360

    [90]

    Li T L, Lee Y L, Teng H S 2011 J. Mater. Chem. 21 5089

  • [1]

    Kamat P V 2013 J. Phys. Chem. Lett. 4 908

    [2]

    Kamat P V, Tvrdy K, Baker D R, Radich J G 2010 Chem. Rev. 110 6664

    [3]

    Bai Y, Mora-Sero I, De Angelis F, Bisquert J, Wang P 2014 Chem. Rev. 114 10095

    [4]

    Kramer I J, Sargent E H 2014 Chem. Rev. 114 863

    [5]

    Hodes G 2008 J. Phys. Chem. C 112 17778

    [6]

    Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S, Seok S I 2014 Nat. Mater. 13 897

    [7]

    Hetsch F, Xu X Q, Wang H K, Kershaw S V, Rogach A L 2011 J. Phys. Chem. Lett. 2 1879

    [8]

    Kamat P V 2008 J. Phys. Chem. C 112 18737

    [9]

    Kramer I J, Sargent E H 2011 ACS Nano 5 8506

    [10]

    Tada H, Fujishima M, Kobayashi H 2011 Chem. Soc. Rev. 40 4232

    [11]

    Kershaw S V, Susha A S, Rogach A L 2013 Chem. Soc. Rev. 42 3033

    [12]

    Ruhle S, Shalom M, Zaban A 2010 Chem. Phys. Chem. 11 2290

    [13]

    Tang J, Sargent E H 2011 Adv. Mater. 23 12

    [14]

    Semonin O E, Luther J M, Choi S, Chen H Y, Gao J, Nozik A J, Beard M C 2011 Science 334 1530

    [15]

    Yella A, Lee H W, Tsao H N, Yi C, Chandiran A K, Nazeeruddin M K, Diau E W, Yeh C Y, Zakeeruddin S M, Grätzel M 2011 Science 334 629

    [16]

    Pan Z, Mora-Sero I, Shen Q, Zhang H, Li Y, Zhao K, Wang J, Zhong X, Bisquert J 2014 J. Am. Chem. Soc. 136 9203

    [17]

    Hod I, Zaban A 2014 Langmuir 30 7264

    [18]

    Kamat P V, Christians J A, Radich J G 2014 Langmuir 30 5716

    [19]

    Corer S, Hodes G 1994 J. Phys. Chem. 98 5338

    [20]

    Yochelis S, Hodes G 2004 Chem. Mater. 16 2740

    [21]

    Hotchandani S, Kamat P V 1992 J. Phys. Chem. 96 6834

    [22]

    Liu D, Kamat P V 1993 J. Phys. Chem. 97 10769

    [23]

    Nasr C, Kamat P V, Hotchandani S 1997 J. Electroanal. Chem. 420 201

    [24]

    Niitsoo O, Sarkar S K, Pejoux C, Ruhle S, Cahen D, Hodes G 2006 J. Photoch. Photobio. A 181 306

    [25]

    Lee Y L, Lo Y S 2009 Adv. Funct. Mater. 19 604

    [26]

    Lin S C, Lee Y L, Chang C H, Shen Y J, Yang Y M 2007 Appl. Phys. Lett. 90 143517

    [27]

    Fan S Q, Kim D, Kim J J, Jung D W, Kang S O, Ko J 2009 Electrochem. Commun. 11 1337

    [28]

    Yu X Y, Lei B X, Kuang D B, Su C Y 2011 Chem. Sci. 2 1396

    [29]

    Yan K Y, Chen W, Yang S H 2013 J. Phys. Chem. C 117 92

    [30]

    Sun W T, Yu Y, Pan H Y, Gao X F, Chen Q, Peng L M 2008 J. Am. Chem. Soc. 130 1124

    [31]

    Vogel R, Hoyer P, Weller H 1994 J. Phys. Chem. 98 3183

    [32]

    Park S, Clark B L, Keszler D A, Bender J P, Wager J F, Reynolds T A, Herman G S 2002 Science 297 65

    [33]

    Plass R, Pelet S, Krueger J, Grätzel M, Bach U 2002 J. Phys. Chem. B 106 7578

    [34]

    Lee H J, Chen P, Moon S J, Sauvage F, Sivula K, Bessho T, Gamelin D R, Comte P, Zakeeruddin S M, Seok S I, Grätzel M, Nazeeruddin M K 2009 Langmuir 25 602

    [35]

    Lee H, Wang M, Chen P, Gamelin D R, Zakeeruddin S M, Grätzel M, Nazeeruddin M K 2009 Nano Lett. 9 4221

    [36]

    Li L, Yang X, Gao J, Tian H, Zhao J, Hagfeldt A, Sun L 2011 J. Am. Chem. Soc. 133 8458

    [37]

    Baker D R, Kamat P V 2009 Adv. Funct. Mater. 19 805

    [38]

    Lee H J, Bang J, Park J, Kim S, Park S M 2010 Chem. Mater. 22 5636

    [39]

    Gonzalez-Pedro V, Xu X, Mora-Sero I, Bisquert J 2010 ACS Nano 4 5783

    [40]

    Santra P K, Kamat P V 2012 J. Am. Chem. Soc. 134 2508

    [41]

    Watson D F 2010 J. Phys. Chem. Lett. 1 2299

    [42]

    Alberoa J, Clifforda J N, Palomaresa E 2014 Coordin.Chem. Rev. 263 53

    [43]

    Zaban A, Micic O I, Gregg B A, Nozik A J 1998 Langmuir 14 3153

    [44]

    Gimenez S, Mora-Sero I, Macor L, Guijarro N, Lana-Villarreal T, Gomez R, Diguna L J, Shen Q, Toyoda T, Bisquert J 2009 Nanotechnology 20 295204

    [45]

    Islam M A, Xia Y, Telesca D A, Steigerwald M L, Herman I P 2004 Chem. Mater. 16 49

    [46]

    Islam M A, Herman I P 2002 Appl. Phys. Lett. 80 3823

    [47]

    Smith N J, Emmett K J, Rosenthal S J 2008 Appl. Phys. Lett. 93 043504

    [48]

    Brown P, Kamat P V 2008 J. Am. Chem. Soc. 130 8890

    [49]

    Salant A, Shalom M, Hod I, Faust A, Zaban A, Banin U 2010 ACS Nano 4 5962

    [50]

    Santra P K, Nair P V, George Thomas K, Kamat P V 2013 J. Phys. Chem. Lett. 4 722

    [51]

    Yu X Y, Liao J Y, Qiu K Q, Kuang D B, Su C Y 2011 ACS Nano 5 9494

    [52]

    Mann J R, Watson D F 2007 Langmuir 23 10924

    [53]

    Lee Y L, Huang B M, Chien H T 2008 Chem. Mater. 20 6903

    [54]

    Kongkanand A, Tvrdy K, Takechi K, Kuno M, Kamat P V 2008 J. Am. Chem. Soc. 130 4007

    [55]

    Bang J H, Kamat P V 2009 ACS Nano 3 1467

    [56]

    Guijarro N, Lana-Villarreal T, Mora-Sero I, Bisquert J, Gomez R 2009 J. Phys. Chem. C 113 4208

    [57]

    Mora-Sero I, Gimenez S, Moehl T, Fabregat-Santiago F, Lana-Villareal T, Gomez R, Bisquert J 2008 Nanotechnology 19 424007

    [58]

    Colvin V L, Goldstein A N, Alivisatos A P 1992 J. Am. Chem. Soc. 114 5221

    [59]

    Bowen Katari J E, Colvin V L, Alivisatos A P 1994 J. Phys. Chem. 98 4109

    [60]

    Lawless D, Kapoor S, Meisel D 1995 J. Phys. Chem. 99 10329

    [61]

    Aldana J, Wang Y A, Peng X 2001 J. Am. Chem. Soc. 123 8844

    [62]

    Lee H J, Yum J H, Leventis H C, Zakeeruddin S M, Haque S A, Chen P, Seok S I, Grazel M, Nazeeruddin M K 2008 J. Phys. Chem. C 112 11600

    [63]

    Lee W, Kang S H, Min S K, Sung Y E, Han S H 2008 Electrochem. Commun. 10 1579

    [64]

    Leschkies K S, Divakar R, Basu J, Enache-Pommer E, Boercker J E, Carter C B, Kortshagen U R, Norris D J, Aydil E S 2007 Nano Lett. 7 1793

    [65]

    Hyun B R, Zhong Y W, Bartnik A C, Sun L, Abruna H D, Wise F W, Goodreau J D, Matthews J R, Leslie T M, Borrelli N F 2008 ACS Nano 2 2206

    [66]

    Lee W, Kang S H, Min S K, Sung Y E, Han S H 2008 Electrochem. Commun. 10 1579

    [67]

    Chen J, Lei W, Deng W Q 2011 Nanoscale 3 674

    [68]

    Chen J, Zhao D W, Song J L, Sun X W, Deng W Q, Liu X W, Lei W 2009 Electrochem. Commun. 11 2265

    [69]

    Sambur J B, Riha S C, Choi D, Parkinson B A 2010 Langmuir 26 4839

    [70]

    Zhang H, Cheng K, Hou Y M, Fang Z, Pan Z X, Wu W J, Hua J L, Zhong X H 2012 Chem. Commun. 48 11235

    [71]

    Liu L, Guo X, Li Y, Zhong X 2010 Inorg. Chem. 49 3768

    [72]

    Pan Z, Zhang H, Cheng K, Hou Y, Hua J, Zhong X 2012 ACS Nano 6 3982

    [73]

    Pan Z, Zhao K, Wang J, Zhang H, Feng Y, Zhong X 2013 ACS Nano 7 5215

    [74]

    Wang J, Mora-Sero I, Pan Z, Zhao K, Zhang H, Feng Y, Yang G, Zhong X, Bisquert J 2013 J. Am. Chem. Soc. 135 15913

    [75]

    Ma W, Luther J M, Zheng H, Wu Y, Alivisatos A P 2009 Nano Lett. 9 1699

    [76]

    Gonzalez-Pedro V, Sima C, Marzari G, Boix P P, Gimenez S, Shen Q, Dittrich T, Mora-Sero I 2013 Phys. Chem. Chem. Phys. 15 13835

    [77]

    Santra P K, Kamat P V 2013 J. Am. Chem. Soc. 135 877

    [78]

    Peter L M, Wijayantha K G U, Riley D J, Waggett J P 2003 J. Phys. Chem. B 107 8378

    [79]

    Ning Z J, Tian H N, Qin H Y, Zhang Q O, Agren H, Sun L C, Fu Y 2010 J. Phys. Chem. C 114 15184

    [80]

    Chang J Y, Su L F, Li C H, Chang C C, Lin J M 2012 Chem. Commun. 48 4848

    [81]

    Li T L, Lee Y L, Teng H 2012 Energy Environ. Sci. 5 5315

    [82]

    Hu X, Zhang Q, Huang X, Li D, Luo Y, Meng Q 2011 J. Mater. Chem. 21 15903

    [83]

    Luo J, Wei H, Huang Q, Hu X, Zhao H, Yu R, Li D, Luo Y, Meng Q 2013 Chem. Commun. 49 3881

    [84]

    McDaniel H, Fuke N, Makarov N S, Pietryga J M, Klimov V I 2013 Nat. Commun. 4 2887

    [85]

    McDaniel H, Fuke N, Pietryga J M, Klimov V I 2013 J. Phys. Chem. Lett. 4 355

    [86]

    Aldakov D, Lefrançois A, Reiss P 2013 J. Mater. Chem. C 1 3756

    [87]

    Allen P M, Bawendi M G 2008 J. Am. Chem. Soc. 130 9240

    [88]

    Booth M, Brown A P, Evans S D, Critchley K 2012 Chem. Mater. 24 2064

    [89]

    Qin L, Li D, Zhang Z, Wang K, Ding H, Xie R, Yang W 2012 Nanoscale 4 6360

    [90]

    Li T L, Lee Y L, Teng H S 2011 J. Mater. Chem. 21 5089

  • [1] 徐炜炜, 戴松元, 方霞琴, 胡林华, 孔凡太, 潘 旭, 王孔嘉. 电沉积处理与染料敏化纳米薄膜太阳电池的优化. 物理学报, 2005, 54(12): 5943-5948. doi: 10.7498/aps.54.5943
    [2] 何仁, 李英叶, 陈敬欣, 赵学玲, 汤欢, 张丽娜, 沈艳娇, 李锋, 杨琳, 韦德远. 三点、四点法机械性能测试建模及其在太阳电池中的应用. 物理学报, 2019, 68(20): 208801. doi: 10.7498/aps.68.20190597
    [3] 姜冰一, 郑建邦, 王春锋, 郝娟, 曹崇德. 基于GaAs/InAs-GaAs/ZnSe量子点太阳电池结构的优化. 物理学报, 2012, 61(13): 138801. doi: 10.7498/aps.61.138801
    [4] 屈俊荣, 郑建邦, 王春锋, 吴广荣, 郝娟. 聚对苯乙炔MOPPV/ZnSe量子点复合材料太阳电池性能研究. 物理学报, 2013, 62(7): 078802. doi: 10.7498/aps.62.078802
    [5] 张晓宇, 张丽平, 马忠权, 刘正新. 硅锗量子阱结构在硅异质结太阳电池中应用的数值模拟. 物理学报, 2016, 65(13): 138801. doi: 10.7498/aps.65.138801
    [6] 罗莹, 马本堃, 王立民. 双量子点分子的电子结构. 物理学报, 2001, 50(2): 278-286. doi: 10.7498/aps.50.278
    [7] 韩晓艳, 侯国付, 魏长春, 张晓丹, 戴志华, 李贵君, 孙建, 陈新亮, 张德坤, 薛俊明, 赵颖, 耿新华. 高速沉积本征微晶硅的优化及其在太阳电池中的应用. 物理学报, 2009, 58(6): 4254-4259. doi: 10.7498/aps.58.4254
    [8] 董庆瑞. 磁场方向调制的InAs量子点分子量子比特. 物理学报, 2007, 56(9): 5436-5440. doi: 10.7498/aps.56.5436
    [9] 尹永琦, 马佳宁, 李华, 王选章, 贺泽龙. 多端耦合量子点分子桥的量子输运特性研究. 物理学报, 2009, 58(6): 4162-4167. doi: 10.7498/aps.58.4162
    [10] 任伦, 李葵英, 崔洁圆, 赵杰. ZnSe量子点敏化纳米TiO2薄膜光电子特性研究. 物理学报, 2017, 66(6): 067301. doi: 10.7498/aps.66.067301
    [11] 戴松元, 孔凡太, 胡林华, 史成武, 方霞琴, 潘 旭, 王孔嘉. 染料敏化纳米薄膜太阳电池实验研究. 物理学报, 2005, 54(4): 1919-1926. doi: 10.7498/aps.54.1919
    [12] 曾隆月, 戴松元, 王孔嘉, 孔凡太, 胡林华, 潘 旭, 史成武. 染料敏化纳米ZnO薄膜太阳电池机理初探. 物理学报, 2005, 54(1): 53-57. doi: 10.7498/aps.54.53
    [13] 翁 坚, 肖尚锋, 陈双宏, 戴松元. 大面积染料敏化太阳电池的实验研究. 物理学报, 2007, 56(6): 3602-3606. doi: 10.7498/aps.56.3602
    [14] 梁林云, 陈 冲, 王孔嘉, 王命泰, 郭 力, 孔明光. 聚苯胺基固态染料敏化太阳电池中电子输运性能的研究. 物理学报, 2007, 56(7): 4270-4276. doi: 10.7498/aps.56.4270
    [15] 寇东星, 姜年权, 黄阳, 戴松元, 陈双宏, 胡林华, 孔凡太. 大面积染料敏化太阳电池的串联阻抗特性研究. 物理学报, 2010, 59(1): 643-648. doi: 10.7498/aps.59.643
    [16] 寇东星, 姜年权, 刘伟庆, 胡林华, 黄阳, 戴松元. 电极表面改性对染料敏化太阳电池性能影响的机理研究. 物理学报, 2010, 59(8): 5857-5862. doi: 10.7498/aps.59.5857
    [17] 陈双宏, 翁坚, 王利军, 张昌能, 黄阳, 姜年权, 戴松元. 负偏压作用下染料敏化太阳电池界面及光电性能研究. 物理学报, 2011, 60(12): 128404. doi: 10.7498/aps.60.128404
    [18] 徐炜炜, 胡林华, 罗向东, 刘培生, 戴松元. 基于薄膜电极溶胶修饰的染料敏化太阳电池光电特性研究. 物理学报, 2012, 61(8): 088801. doi: 10.7498/aps.61.088801
    [19] 肖文波, 刘伟庆, 吴华明, 张华明. 太阳电池单二极管模型中的参数提取方法. 物理学报, 2018, 67(19): 198801. doi: 10.7498/aps.67.20181024
    [20] 李凤, 马忠权, 孟夏杰, 殷晏庭, 于征汕, 吕鹏. 晶硅太阳电池中Fe-B对与少子寿命、陷阱浓度及内量子效率的相关性. 物理学报, 2010, 59(6): 4322-4329. doi: 10.7498/aps.59.4322
  • 引用本文:
    Citation:
计量
  • 文章访问数:  793
  • PDF下载量:  941
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-22
  • 修回日期:  2014-12-04
  • 刊出日期:  2015-02-05

预先合成量子点组装制备高效量子点太阳电池

  • 1. 结构可控先进功能材料及其制备教育部重点实验室, 华东理工大学应用化学研究所, 上海 200237
    基金项目: 

    国家自然科学基金(批准号: 21175043) 和上海市科委 (批准号: 11JC1403100, 12ZR1407700)资助的课题.

摘要: 量子点太阳电池现已成为极具潜力的“第三代” 光伏器件, 其优点体现在材料成本低廉, 制备工艺简便, 以及其敏化剂特有的多激子效应(MEG) 潜能和吸光范围可方便调节等方面. 但是与染料分子敏化剂相比, 量子点敏化剂粒径更大、表面缺乏具有与TiO2结合的官能团, 这导致其在TiO2介孔中渗透阻力大、难以在TiO2表面吸附沉积, 所以量子点沉积手段在电池组装过程中尤为重要. 本文综述了电池组装过程中量子点的沉积方法, 分类阐述了直接生长量子点方法: 化学浴沉积(CBD)和连续离子层吸附生长(SILAR), 以及采用预先合成量子点的沉积方法: 连接分子辅助法(LA)、直接吸附法(DA)和电泳沉积(EPD)方法, 陈述了各沉积方法的发展过程及相应电池性能的改善, 对比了这些沉积方法的优缺点. 突出介绍了预先合成量子点的沉积方法, 特别是近年来不断优化而凸显优势的连接分子辅助法(LA). 总结了此方法快速、均匀沉积以及实现器件高性能的特点, 介绍了此方法沉积表面缺陷更少、结构更完善、材料更“绿色化”的量子点敏化剂的最新研究成果.

English Abstract

参考文献 (90)

目录

    /

    返回文章
    返回