搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

半刚性高分子链螺旋结构诱导纳米棒的有序结构

华昀峰 张冬 章林溪

引用本文:
Citation:

半刚性高分子链螺旋结构诱导纳米棒的有序结构

华昀峰, 张冬, 章林溪

Ordered structures of nanorods induced by the helixes of semiflexible polymer chains

Hua Yun-Feng, Zhang Dong, Zhang Lin-Xi
PDF
导出引用
  • 在自然界中, 螺旋结构广泛存在. 在熵的驱动下, 高分子链能在某些特殊情形下形成螺旋结构. 采用分子动力学方法研究了高分子链诱导纳米棒的自组装行为, 发现纳米棒/高分子链体系的构象与纳米棒的数量、高分子链的刚性等密切相关. 当纳米棒与高分子链之间存在适度吸附能时, 纳米棒能够形成三种完全不同的构象, 特别是在半刚性高分子链诱导下纳米棒能够形成线型排列. 研究结果对新型材料制备具有一定指导意义.
    Self-assembly of nanoparticles, such as nanospheres, nanorods (NRs), and nanotubes, in polymer systems is one of the most prominent and promising candidates for the development of novel materials with high mechanical, optical, and electrical performances. A most concerned topic on the nanoparticle/polymer composites is the spatial arrangement and distribution of nanoparticles in the nanocomposites, which is controlled by the competition between the entropic packing constraints related to the incompatibility between species with different sizes and geometries, and the enthalpic consequences of a variety of polymer-nanoparticle interactions. The studies on the nonspherical nanoparticles, such as NRs, are of more challenging than on spherical nanoparticles, because both positional and orientational ordering of anisotropic nanoinclusion have an important influence on the morphology of nanocomposition, while those studies are necessary for applications of nanoscopic anisotropic objects in photovoltaic and filled emission devices. When low-volume fractions of NRs are immersed in a binary, phase-separating blend, the rods can self-assemble into needle-like, percolating networks and this special structure can enhance the macroscopic electrical conductivity and mechanical property of the material. When an electric field is applied, the phase separations of ligand-functionalized NRs in a polymer matrix and densely packed hexagonal arrays of NRs are produced. In this paper, by employing the coarse-grained model and molecular dynamics simulation, we explore the structures of nanocomposites in which a small number of NRs bind with semiflexible polymer chain. The morphology of NRs/polymer mixture is greatly affected by the bending energy b of semiflexible polymer and the binding energy D0 between NRs and semiflexible polymer. If the binding energy D0 is less than 1.1kBT, the NRs are almost free and a gas-like phase is observed. For a suitably large value of D0, three completely different morphologies of NRs/polymer mixtures are identified, namely, the side-to-side parallel aggregation of NRs, the end-to-end parallel aggregation of NRs, and the dispersion of NRs. For the flexible polymer chain (i.e., small bending energy b), the sideto- side parallel aggregation structure of NRs and the disordered conformation of adsorbed polymer chain are observed. In general, a typical equilibrium conformation of free flexible polymer chain is random coil, the binding energy between NRs and polymer can lead to the collapse of a random coil for flexible polymer chain, and the NRs aggregate in the manner of the side-to-side parallel to each other because the enthalpy is maximized through sharing the more polymer monomers between neighbor NRs. That is to say, the local aggregation of NRs can be found because the orientational entropy can make the aggregated NRs arrange in the side-to-side parallel manner. In the rigid polymer chain limit (very large bending energy), the rigid polymer chain is stretched and the NRs are well dispersed. As the rigid polymer holds a long persistence length, the NRs can move freely along the stretched polymer chain, and the dispersed conformation of NRs is formed. For the semiflexible polymer chain with a moderate bending energy, the NRs are aggregated in the end-to-end parallel arrangement. Meanwhile, the polymer monomers wrap around those NRs in a well-defined helical structure. The above discussion indicates that the morphologies of NRs are closely related to the conformations of polymer chains. In fact, when a semiflexible polymer chain binds with a large rigid surface, such as nanotube, the helical structure will be formed and it is driven by entropy. The formation of helical structures for a semiflexible polymer chain can induce NRs to form an end-to-end parallel aggregation. The formation of end-to-end parallel arrangement of NR aggregation is driven by the helical structure of semiflexible polymer chain. For the moderate binding energy, the entropy can drive the semiflexible polymer chain to form local helical structure around the NRs. When more NRs are added to the semiflexble polymer chain/NR mixtures, more local helical structures around NRs are formed. Because the movements of NRs binding with the semiflexible chain are nearly free and an end-to-end parallel arrangement of NRs can form more helical structures than the dispersed NRs, the self-assembly of NRs into an end-to-end parallel structure is expected. That is to say, the formation of end-to-end parallel aggregation of NRs is induced by the helix of semiflexible polymers because it can gain more entropies. The self-assembly of a small number of NRs can be well controlled by varying the stiffness of adsorbed polymer chain. This investigation may provide a new pathway to develop smart medium to manipulate the aggreagtion behavior of a few NRs and to construct novel materials with high performance.
    • 基金项目: 国家自然科学基金(批准号: 21174131, 21204060, 21374102)和国家自然科学基金重点项目(批准号: 20934004) 资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 21174131, 21204060, 21374102) and the Key Program of the National Natural Science Foundation of China (Grant No. 20934004).
    [1]

    Fan S S, Chapline M G, Franklin N R, Tombler T W, Cassell A M, Dai H J 1999 Science 283 512

    [2]

    Huynh W U, Dittmer J J, Alivisatos A P 2002 Science 295 2425

    [3]

    Smith K A, Tyagi S, Balazs A C 2005 Macromolecules 38 10138

    [4]

    Kusner I, Srebnik S 2006 Chem. Phys. Lett. 430 84

    [5]

    Gurevitch I, Srebnik S 2008 J. Chem. Phys. 128 144901

    [6]

    Yang Z Y, Zhang D, Zhang L X, Chen H P, teeq-ur-Rehman A, Liang H J 2011 Soft Matter 7 6836

    [7]

    Snir Y, Kamien R D 2005 Science 307 1067

    [8]

    Snir Y, Kamien R D 2007 Phys. Rev. E 75 051114

    [9]

    Tong H P, Zhang L X 2012 Acta Phys. Sin. 61 058701 (in Chinese) [仝唤平, 章林溪 2012 物理学报 61 058701]

    [10]

    Deng Z Y, Weng L C, Zhang D, He L L, Zhang L X 2014 Acta Phys. Sin. 63 018201 (in Chinese) [邓真渝, 翁乐纯, 张冬, 何林李, 章林溪 2014 物理学报 63 018201]

    [11]

    Zhang D, Zhang L X 2014 Soft Matter 10 7661

    [12]

    Plimpton S J 1995 Comput. J. Phys. 117 1

    [13]

    Hooper J B, Schweizer K S 2005 Macromolecules 38 8858

  • [1]

    Fan S S, Chapline M G, Franklin N R, Tombler T W, Cassell A M, Dai H J 1999 Science 283 512

    [2]

    Huynh W U, Dittmer J J, Alivisatos A P 2002 Science 295 2425

    [3]

    Smith K A, Tyagi S, Balazs A C 2005 Macromolecules 38 10138

    [4]

    Kusner I, Srebnik S 2006 Chem. Phys. Lett. 430 84

    [5]

    Gurevitch I, Srebnik S 2008 J. Chem. Phys. 128 144901

    [6]

    Yang Z Y, Zhang D, Zhang L X, Chen H P, teeq-ur-Rehman A, Liang H J 2011 Soft Matter 7 6836

    [7]

    Snir Y, Kamien R D 2005 Science 307 1067

    [8]

    Snir Y, Kamien R D 2007 Phys. Rev. E 75 051114

    [9]

    Tong H P, Zhang L X 2012 Acta Phys. Sin. 61 058701 (in Chinese) [仝唤平, 章林溪 2012 物理学报 61 058701]

    [10]

    Deng Z Y, Weng L C, Zhang D, He L L, Zhang L X 2014 Acta Phys. Sin. 63 018201 (in Chinese) [邓真渝, 翁乐纯, 张冬, 何林李, 章林溪 2014 物理学报 63 018201]

    [11]

    Zhang D, Zhang L X 2014 Soft Matter 10 7661

    [12]

    Plimpton S J 1995 Comput. J. Phys. 117 1

    [13]

    Hooper J B, Schweizer K S 2005 Macromolecules 38 8858

  • [1] 王小峰, 陶钢, 徐宁, 王鹏, 李召, 闻鹏. 冲击波诱导水中纳米气泡塌陷的分子动力学分析. 物理学报, 2021, 70(13): 134702. doi: 10.7498/aps.70.20210058
    [2] 李杰杰, 鲁斌斌, 线跃辉, 胡国明, 夏热. 纳米多孔银力学性能表征分子动力学模拟. 物理学报, 2018, 67(5): 056101. doi: 10.7498/aps.67.20172193
    [3] 李丽丽, Xia Zhen-Hai, 杨延清, 韩明. SiC纳米纤维/C/SiC复合材料拉伸行为的分子动力学研究. 物理学报, 2015, 64(11): 117101. doi: 10.7498/aps.64.117101
    [4] 闻鹏, 陶钢, 任保祥, 裴政. 纳米多晶铜的超塑性变形机理的分子动力学探讨. 物理学报, 2015, 64(12): 126201. doi: 10.7498/aps.64.126201
    [5] 林长鹏, 刘新健, 饶中浩. 铝纳米颗粒的热物性及相变行为的分子动力学模拟. 物理学报, 2015, 64(8): 083601. doi: 10.7498/aps.64.083601
    [6] 张程宾, 程启坤, 陈永平. 分形结构纳米复合材料热导率的分子动力学模拟研究. 物理学报, 2014, 63(23): 236601. doi: 10.7498/aps.63.236601
    [7] 杨成兵, 解辉, 刘朝. 锂离子进入碳纳米管端口速度的分子动力学模拟. 物理学报, 2014, 63(20): 200508. doi: 10.7498/aps.63.200508
    [8] 袁林, 敬鹏, 刘艳华, 徐振海, 单德彬, 郭斌. 多晶银纳米线拉伸变形的分子动力学模拟研究. 物理学报, 2014, 63(1): 016201. doi: 10.7498/aps.63.016201
    [9] 马彬, 饶秋华, 贺跃辉, 王世良. 单晶钨纳米线拉伸变形机理的分子动力学研究. 物理学报, 2013, 62(17): 176103. doi: 10.7498/aps.62.176103
    [10] 马文, 陆彦文. 纳米多晶铜中冲击波阵面的分子动力学研究. 物理学报, 2013, 62(3): 036201. doi: 10.7498/aps.62.036201
    [11] 顾芳, 张加宏, 杨丽娟, 顾斌. 应变石墨烯纳米带谐振特性的分子动力学研究. 物理学报, 2011, 60(5): 056103. doi: 10.7498/aps.60.056103
    [12] 汪志刚, 吴亮, 张杨, 文玉华. 面心立方铁纳米粒子的相变与并合行为的分子动力学研究. 物理学报, 2011, 60(9): 096105. doi: 10.7498/aps.60.096105
    [13] 杨平, 吴勇胜, 许海锋, 许鲜欣, 张立强, 李培. TiO2/ZnO纳米薄膜界面热导率的分子动力学模拟. 物理学报, 2011, 60(6): 066601. doi: 10.7498/aps.60.066601
    [14] 马文, 祝文军, 张亚林, 陈开果, 邓小良, 经福谦. 纳米多晶金属样本构建的分子动力学模拟研究. 物理学报, 2010, 59(7): 4781-4787. doi: 10.7498/aps.59.4781
    [15] 王伟, 张凯旺, 孟利军, 李中秋, 左学云, 钟建新. 多壁碳纳米管外壁高温蒸发的分子动力学模拟. 物理学报, 2010, 59(4): 2672-2678. doi: 10.7498/aps.59.2672
    [16] 陈开果, 祝文军, 马文, 邓小良, 贺红亮, 经福谦. 冲击波在纳米金属铜中传播的分子动力学模拟. 物理学报, 2010, 59(2): 1225-1232. doi: 10.7498/aps.59.1225
    [17] 周国荣, 高秋明. 金属Ni纳米线凝固行为的分子动力学模拟. 物理学报, 2007, 56(3): 1499-1505. doi: 10.7498/aps.56.1499
    [18] 杨全文, 朱如曾. 纳米铜团簇凝结规律的分子动力学研究. 物理学报, 2005, 54(9): 4245-4250. doi: 10.7498/aps.54.4245
    [19] 梁海弋, 王秀喜, 吴恒安, 王宇. 纳米多晶铜微观结构的分子动力学模拟. 物理学报, 2002, 51(10): 2308-2314. doi: 10.7498/aps.51.2308
    [20] 吴恒安, 倪向贵, 王宇, 王秀喜. 金属纳米棒弯曲力学行为的分子动力学模拟. 物理学报, 2002, 51(7): 1412-1415. doi: 10.7498/aps.51.1412
计量
  • 文章访问数:  5100
  • PDF下载量:  305
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-09
  • 修回日期:  2014-11-26
  • 刊出日期:  2015-04-05

/

返回文章
返回