搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种新型光滑粒子动力学固壁边界施加模型

刘虎 强洪夫 陈福振 韩亚伟 范树佳

一种新型光滑粒子动力学固壁边界施加模型

刘虎, 强洪夫, 陈福振, 韩亚伟, 范树佳
PDF
导出引用
导出核心图
  • 由于Lagrange粒子法的本质, 固壁边界条件的施加一直是光滑粒子动力学方法的难点之一. 本文从固壁边界的物理原理出发, 应用多层虚粒子表征固壁边界, 提出了一种新型固壁边界施加模型. 将虚粒子看作流体的扩展, 计算中虚粒子密度保持不变, 压力、速度等参数通过对流体粒子的插值获得, 虚粒子有条件的参与控制方程的计算, 对流体的密度/压力产生影响, 通过压力梯度隐式地表征壁面与流体之间的作用强度并对流体粒子施加沿壁面法线方向的斥力作用, 防止流体粒子对壁面的穿透. 数值算例测试结果表明, 与现有固壁边界施加方法相比, 本文方法更加符合流体与固壁边界作用的物理原理, 可以简单、有效地施加固壁边界条件, 方便地应用于具有复杂几何边界的问题, 获得稳定的流场形态、规则的粒子秩序及良好的速度、压力等参量的分布.
    • 基金项目: 国家自然科学基金(批准号: 51276192)资助的课题.
    [1]

    Lucy L B 1977 Astron. J. 82 1013

    [2]

    Gingold R A, Monaghan J J 1977 Mon. Not. R. Astron. Soc. 181 375

    [3]

    Zhang A M 2008 Chin. Phys. B 22 927

    [4]

    Sun Z H, Han R J 2008 Chin. Phys. B 17 3185

    [5]

    Qiang H F, Shi C, Chen F Z, Han Y W 2013 Acta Phys. Sin. 62 214701 (in Chinese) [强洪夫, 石超, 陈福振, 韩亚伟 2013 物理学报 62 214701]

    [6]

    Monaghan J J 2005 Rep. Prog. Phys. 68 1703

    [7]

    Monaghan J J 1994 J. Comput. Phys. 110 399

    [8]

    Monaghan J J, Kajtar J B 2009 Comput. Phys. Commun. 180 1811

    [9]

    Liu M B, Shao J R, Chang J Z 2012 Sci. China Technol. Sc. 55 244

    [10]

    Han Y W, Qiang H F, Zhao J L, Gao W R 2013 Acta Phys. Sin. 62 044702 (in Chinese) [韩亚伟, 强洪夫, 赵玖玲, 高巍然 2013 物理学报 62 044702]

    [11]

    Han Y W, Qiang H F, Wang K P, Gao W R 2011 Eng. Mech. 28 245 (in Chinese) [强洪夫, 韩亚伟, 王坤鹏, 高巍然 2011 工程力学 28 245]

    [12]

    Morris J P, Fox P J, Zhu Y 1997 J. Comput. Phys. 136 214

    [13]

    Liu M B, Liu G R, Lam K Y 2002 Shock Waves 12 181

    [14]

    Colagrossi A, Landrini M 2003 J. Comput. Phys. 191 448

    [15]

    Colagrossi A, Lugni C, Brocchini M 2010 J. Hydraul. Res. 48 94

    [16]

    Marrone S, Antuono M, Colagrossi A, Colicchio G, Touzé D L, Graziani G 2011 Comput. Methods Appl. Mech. Engrg. 200 1526

    [17]

    Adami S, Hu X Y, Adams N A 2012 J. Comput. Phys. 231 7057

    [18]

    Liu M B, Chang J Z 2010 Acta Phys. Sin. 59 3654 (in Chinese) [刘谋斌, 常建忠 2010 物理学报 59 3654]

    [19]

    Liu G R, Liu M B (translate by Han X, Yang G, Qiang H F) 2005 Smoothed Particle Hydrodynamics: A Meshfree Particle Method (Changsha: Hunan University Press) pp58-67 (in Chinese) [Liu G R, Liu M B (韩旭, 杨刚, 强洪夫 译) 2005 光滑粒子流体动力学-一种无网格粒子法 (长沙:湖南大学出版社)第58-67页]

    [20]

    Bonet J, Lok T S L 1999 Comput. Method. Appl. M. 180 97

    [21]

    Marrone S, Bouscasse B, Colagrossi A, Antuono M 2012 Comput. Fluids 69 54

    [22]

    Chen J K, Beraun J E, Carney T C 1999 Int. J. Numer. Meth. Eng. 46 231

    [23]

    Schmid M, Klein F 1995 NADCA 18. International Die Casting Congress and Exposition, Indianapolis, 1995, p93

    [24]

    He Y 2012 M.S. Thesis (Guangzhou: South China University of Technology) (in Chinese) [何毅 2012 硕士学位论文 (广州: 华南理工大学)]

    [25]

    Cleary P W, Ha J 2000 Int. J. Cast Metal. Res. 12 409

    [26]

    Koshizuka S, Oka Y 1996 Nucl. Sci. Eng. 123 421

    [27]

    Lobovsky L, Botia-Vera E, Castellana F, Mas-Soler J, Souto-Iglesias A 2014 J. Fluid. Struct. 48 407

    [28]

    Monaghan J J 2012 Annu. Rev. Fluid Mech. 44 323

  • [1]

    Lucy L B 1977 Astron. J. 82 1013

    [2]

    Gingold R A, Monaghan J J 1977 Mon. Not. R. Astron. Soc. 181 375

    [3]

    Zhang A M 2008 Chin. Phys. B 22 927

    [4]

    Sun Z H, Han R J 2008 Chin. Phys. B 17 3185

    [5]

    Qiang H F, Shi C, Chen F Z, Han Y W 2013 Acta Phys. Sin. 62 214701 (in Chinese) [强洪夫, 石超, 陈福振, 韩亚伟 2013 物理学报 62 214701]

    [6]

    Monaghan J J 2005 Rep. Prog. Phys. 68 1703

    [7]

    Monaghan J J 1994 J. Comput. Phys. 110 399

    [8]

    Monaghan J J, Kajtar J B 2009 Comput. Phys. Commun. 180 1811

    [9]

    Liu M B, Shao J R, Chang J Z 2012 Sci. China Technol. Sc. 55 244

    [10]

    Han Y W, Qiang H F, Zhao J L, Gao W R 2013 Acta Phys. Sin. 62 044702 (in Chinese) [韩亚伟, 强洪夫, 赵玖玲, 高巍然 2013 物理学报 62 044702]

    [11]

    Han Y W, Qiang H F, Wang K P, Gao W R 2011 Eng. Mech. 28 245 (in Chinese) [强洪夫, 韩亚伟, 王坤鹏, 高巍然 2011 工程力学 28 245]

    [12]

    Morris J P, Fox P J, Zhu Y 1997 J. Comput. Phys. 136 214

    [13]

    Liu M B, Liu G R, Lam K Y 2002 Shock Waves 12 181

    [14]

    Colagrossi A, Landrini M 2003 J. Comput. Phys. 191 448

    [15]

    Colagrossi A, Lugni C, Brocchini M 2010 J. Hydraul. Res. 48 94

    [16]

    Marrone S, Antuono M, Colagrossi A, Colicchio G, Touzé D L, Graziani G 2011 Comput. Methods Appl. Mech. Engrg. 200 1526

    [17]

    Adami S, Hu X Y, Adams N A 2012 J. Comput. Phys. 231 7057

    [18]

    Liu M B, Chang J Z 2010 Acta Phys. Sin. 59 3654 (in Chinese) [刘谋斌, 常建忠 2010 物理学报 59 3654]

    [19]

    Liu G R, Liu M B (translate by Han X, Yang G, Qiang H F) 2005 Smoothed Particle Hydrodynamics: A Meshfree Particle Method (Changsha: Hunan University Press) pp58-67 (in Chinese) [Liu G R, Liu M B (韩旭, 杨刚, 强洪夫 译) 2005 光滑粒子流体动力学-一种无网格粒子法 (长沙:湖南大学出版社)第58-67页]

    [20]

    Bonet J, Lok T S L 1999 Comput. Method. Appl. M. 180 97

    [21]

    Marrone S, Bouscasse B, Colagrossi A, Antuono M 2012 Comput. Fluids 69 54

    [22]

    Chen J K, Beraun J E, Carney T C 1999 Int. J. Numer. Meth. Eng. 46 231

    [23]

    Schmid M, Klein F 1995 NADCA 18. International Die Casting Congress and Exposition, Indianapolis, 1995, p93

    [24]

    He Y 2012 M.S. Thesis (Guangzhou: South China University of Technology) (in Chinese) [何毅 2012 硕士学位论文 (广州: 华南理工大学)]

    [25]

    Cleary P W, Ha J 2000 Int. J. Cast Metal. Res. 12 409

    [26]

    Koshizuka S, Oka Y 1996 Nucl. Sci. Eng. 123 421

    [27]

    Lobovsky L, Botia-Vera E, Castellana F, Mas-Soler J, Souto-Iglesias A 2014 J. Fluid. Struct. 48 407

    [28]

    Monaghan J J 2012 Annu. Rev. Fluid Mech. 44 323

  • [1] 韩亚伟, 强洪夫, 赵玖玲, 高巍然. 光滑粒子流体动力学方法固壁处理的一种新型排斥力模型. 物理学报, 2013, 62(4): 044702. doi: 10.7498/aps.62.044702
    [2] 苏铁熊, 马理强, 刘谋斌, 常建忠. 基于光滑粒子动力学方法的液滴冲击固壁面问题数值模拟. 物理学报, 2013, 62(6): 064702. doi: 10.7498/aps.62.064702
    [3] 马理强, 常建忠, 刘汉涛, 刘谋斌. 液滴溅落问题的光滑粒子动力学模拟. 物理学报, 2012, 61(5): 054701. doi: 10.7498/aps.61.054701
    [4] 常建忠, 刘谋斌. 光滑粒子动力学方法中粒子分布与数值稳定性分析. 物理学报, 2010, 59(6): 3654-3662. doi: 10.7498/aps.59.3654
    [5] 蒋涛, 欧阳洁, 赵晓凯, 任金莲. 黏性液滴变形过程的核梯度修正光滑粒子动力学模拟. 物理学报, 2011, 60(5): 054701. doi: 10.7498/aps.60.054701
    [6] 马理强, 刘谋斌, 常建忠, 苏铁熊, 刘汉涛. 液滴冲击液膜问题的光滑粒子动力学模拟. 物理学报, 2012, 61(24): 244701. doi: 10.7498/aps.61.244701
    [7] 蒋涛, 陆林广, 陆伟刚. 等直径微液滴碰撞过程的改进光滑粒子动力学模拟. 物理学报, 2013, 62(22): 224701. doi: 10.7498/aps.62.224701
    [8] 蒋涛, 黄金晶, 陆林广, 任金莲. 非线性薛定谔方程的高阶分裂改进光滑粒子动力学算法. 物理学报, 2019, 68(9): 090203. doi: 10.7498/aps.68.20190169
    [9] 马理强, 苏铁熊, 刘汉涛, 孟青. 微液滴振荡过程的光滑粒子动力学方法数值模拟. 物理学报, 2015, 64(13): 134702. doi: 10.7498/aps.64.134702
    [10] 杨秀峰, 刘谋斌. 光滑粒子动力学SPH方法应力不稳定性的一种改进方案 . 物理学报, 2012, 61(22): 224701. doi: 10.7498/aps.61.224701
    [11] 蒋涛, 任金莲, 徐磊, 陆林广. 非等温非牛顿黏性流体流动问题的修正光滑粒子动力学方法模拟. 物理学报, 2014, 63(21): 210203. doi: 10.7498/aps.63.210203
    [12] 蒋涛, 陈振超, 任金莲, 李刚. 基于修正并行光滑粒子动力学方法三维变系数瞬态热传导问题的模拟. 物理学报, 2017, 66(13): 130201. doi: 10.7498/aps.66.130201
    [13] 雷娟棉, 杨浩, 黄灿. 基于弱可压与不可压光滑粒子动力学方法的封闭方腔自然对流数值模拟及算法对比. 物理学报, 2014, 63(22): 224701. doi: 10.7498/aps.63.224701
    [14] 蒋涛, 欧阳洁, 栗雪娟, 张林, 任金莲. 瞬态热传导问题的一阶对称SPH方法模拟. 物理学报, 2011, 60(9): 090206. doi: 10.7498/aps.60.090206
    [15] 林晨森, 陈硕, 肖兰兰. 适用复杂几何壁面的耗散粒子动力学边界条件. 物理学报, 2019, 68(14): 140204. doi: 10.7498/aps.68.20190533
    [16] 强洪夫, 刘开, 陈福振. 液滴在气固交界面变形移动问题的光滑粒子流体动力学模拟. 物理学报, 2012, 61(20): 204701. doi: 10.7498/aps.61.204701
    [17] 邱流潮. 基于不可压缩光滑粒子动力学的黏性液滴变形过程仿真. 物理学报, 2013, 62(12): 124702. doi: 10.7498/aps.62.124702
    [18] 雷娟棉, 黄灿. 一种改进的光滑粒子流体动力学前处理方法. 物理学报, 2014, 63(14): 144702. doi: 10.7498/aps.63.144702
    [19] 孙鹏楠, 李云波, 明付仁. 自由上浮气泡运动特性的光滑粒子流体动力学模拟. 物理学报, 2015, 64(17): 174701. doi: 10.7498/aps.64.174701
    [20] 姚祎, 周哲玮, 胡国辉. 有结构壁面上液滴运动特征的耗散粒子动力学模拟. 物理学报, 2013, 62(13): 134701. doi: 10.7498/aps.62.134701
  • 引用本文:
    Citation:
计量
  • 文章访问数:  979
  • PDF下载量:  500
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-09
  • 修回日期:  2014-11-07
  • 刊出日期:  2015-05-05

一种新型光滑粒子动力学固壁边界施加模型

  • 1. 第二炮兵工程大学动力工程系, 西安 710025;
  • 2. 第二炮兵96151部队, 洛阳 471000
    基金项目: 

    国家自然科学基金(批准号: 51276192)资助的课题.

摘要: 由于Lagrange粒子法的本质, 固壁边界条件的施加一直是光滑粒子动力学方法的难点之一. 本文从固壁边界的物理原理出发, 应用多层虚粒子表征固壁边界, 提出了一种新型固壁边界施加模型. 将虚粒子看作流体的扩展, 计算中虚粒子密度保持不变, 压力、速度等参数通过对流体粒子的插值获得, 虚粒子有条件的参与控制方程的计算, 对流体的密度/压力产生影响, 通过压力梯度隐式地表征壁面与流体之间的作用强度并对流体粒子施加沿壁面法线方向的斥力作用, 防止流体粒子对壁面的穿透. 数值算例测试结果表明, 与现有固壁边界施加方法相比, 本文方法更加符合流体与固壁边界作用的物理原理, 可以简单、有效地施加固壁边界条件, 方便地应用于具有复杂几何边界的问题, 获得稳定的流场形态、规则的粒子秩序及良好的速度、压力等参量的分布.

English Abstract

参考文献 (28)

目录

    /

    返回文章
    返回