搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

圆柱形分层五模材料声学隐身衣的理论与数值分析

张向东 陈虹 王磊 赵志高 赵爱国

引用本文:
Citation:

圆柱形分层五模材料声学隐身衣的理论与数值分析

张向东, 陈虹, 王磊, 赵志高, 赵爱国

Theoretical and numerical analysis of layered cylindrical pentamode acoustic cloak

Zhang Xiang-Dong, Chen Hong, Wang Lei, Zhao Zhi-Gao, Zhao Ai-Guo
PDF
导出引用
  • 声学隐身衣物性参数分布的连续对制备造成了很大困难, 需要采用分层的方法进行近似. 研究分层对隐身衣性能的影响具有重要意义. 本文首先推导了圆柱形分层声学隐身衣散射声压场的理论解, 然后通过数值算例验证了理论推导的正确性, 最后针对层数、层厚分布对隐身衣性能的影响进行了计算研究. 结果表明, 选取恰当的层数和层厚分布可在不增加制备难度的同时改善隐身衣性能.
    As a newly-developed method, acoustic cloak made of pentamode materials is on its speedway to the promising potential application. However, physical fabrication of pentamode cloak with continuously varying material parameters can be a tough work, if not totally impossible. Layering is a natural compromise to bypass this quandary. Researches on layering effects of inertial cloak are ample. However, researches on layering pentamode acoustic cloak are relatively limited. Among these researches Scandrett extends the effective bandwidth through optimization of material parameters[2010 J. Acoust. Soc. Am. 127 2856, 2011 Wave Motion. 48 505].#br#The present work concerns the layering effects of pentamode acoustic cloak. By comparing with precedent results, the present paper has two major innovations: Firstly, cylinder is chosen to be the basic geometry. This is of obvious advantage since cylinder is the basic geometry of acoustic cloak's important potential host. Secondly, effects of layers' number and thickness distribution on the stealth effect are analyzed. The two are key parameters to be determined in the layering process. This paper is organized as follows: Firstly, analytical expression of the scattering pressure field of layered cloak is deduced by means of variables separation. In this process Fourier expansion plays a key role. And the harmonic assumption of the incident acoustic wave is made. Secondly, typical cases are calculated to verify the validation of the theoretical analysis. First let material parameters tend towards that of water, and compare the scattering field with that of the bare rigid object when the cloak is replaced by water. Second let the layering number goes to infinity, and compare the scattering field with that of the continuous cloak. Phenomena conforming with basic physical laws are observed. And validity of the theory and codes is confirmed. Thirdly, effects of layers' number and thickness distribution on the stealth character are theoretically and numerically analyzed. One can easily see from the computational results that a critical number N exists. When layers' number exceeds N, improvement of the stealth effect becomes less efficient by further adding layers' number. One can also see from the computational results that a wise distributional strategy that helps improve the stealth effect indeed exists. And the optimization iteration can be utilized to further improve it.#br#As a summary, the present paper concerns the layering process of cloaking. Qualitatively and quantitatively, several significant results are obtained. This paper offers a useful reference for future fabrication of realistic acoustic pentamode cloak.
    [1]

    Leonhardt U 2006 Science 312 1777

    [2]

    Pendry J B, Schurig D, Smith D R 2006 Science 312 1780

    [3]

    Kwon D H, Werner D H 2008 Appl. Phys. Lett. 92 013505

    [4]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977

    [5]

    Ma H, Qu S B, Xu Z, Zhang J Q, Wang J F 2009 Chin. Phys. B 18 1025

    [6]

    Wu Q, Zhang K, Meng FY, Li LW 2009 Acta Phys. Sin. 58 1619 (in Chinese) [吴群, 张狂, 孟繁义, 李乐伟 2009 物理学报 58 1619]

    [7]

    Guo P F, Li D, Dai Q, Fu Y Q 2013 Chin. Phys. B 22 054101

    [8]

    Smolyaninov I I, Smolyaninova V N, Kildishev A V, Shalaev V M 2009 Phys. Rev. Lett. 102 213901

    [9]

    Cummer S A, Popa B I, Schurig D, Smith D R, Pendry J B 2006 Phys. Rev. E 74 036621

    [10]

    Ruan Z, Yan M, Neff C W, Qiu M 2007 Phys. Rev. Lett. 99 113903

    [11]

    Luo XY, Liu DY, Yao LF, Dong JF 2014 Acta Phys. Sin. 63 084101 (in Chinese) [罗孝阳, 刘道亚, 姚丽芳, 董建峰 2014 物理学报 63 084101]

    [12]

    Cummer S A, Schurig D 2007 New J. Phys. 9 45

    [13]

    Chen H, Chan C T 2007 Appl. Phys. Lett. 91 183518

    [14]

    Cummer S A, Popa B I, Schurig D, Smith D R, Pendry J B, Rahm M, Starr A 2008 Phys. Rev. Lett. 100 024301

    [15]

    Cummer S A, Rahm M, Schurig D 2008 New J. Phys. 10 115025

    [16]

    Liang W C, Sánchez-Dehesa J 2007 J. Phys. 9 010450

    [17]

    Torrent D, Sánchez-Dehesa J 2008 New J. Phys. 10 063015

    [18]

    Farhat M, Guenneau S, Enoch S, Movchan A, Zolla F, Nicolet A 2008 New J. Phys. 10 115030

    [19]

    Norris A N 2008 Proc. R. Soc. A 464 2411

    [20]

    Hu J, Liu X N, Hu G K 2013 Wave Motion 170

    [21]

    Layman C J, Naify C J, Martin T P, Calvo D C, Orris G J 2013 Phys. Rev. Lett. 111 024302

    [22]

    Bckmann T, Thiel M, Kadic1 M, Schittny R, Wegener M 2014 Nature Communications 5 4130

    [23]

    Gao D B, Zeng X W 2012 Acta Phys. Sin. 61 184301 (in Chinese) [高东宝, 曾新吾 2012 物理学报 61 184301]

    [24]

    Cai L, Wen J H, Yu D L, Lu Z M, Wen X S 2014 Chin. Phys. Lett. 31 094303

    [25]

    Scandrett C L, Boisvert J E, Howarth T R 2010 J. Acoust. Soc. Am. 127 2856

    [26]

    Scandrett C L, Boisvert J E, Howarth T R 2011 Wave Motion. 48 505

    [27]

    Du G H, Zhu Z M, Gong X F 2012 Basic Acoustics (Nanjing: Nanjing University Press) (in Chinese) [杜功焕, 朱哲民, 龚秀芬 2012 声学基础(南京: 南京大学出版社)]

    [28]

    Jones D S 1986 Acoustic and Electromagnetic Waves (Oxford: Clarendon Press)

  • [1]

    Leonhardt U 2006 Science 312 1777

    [2]

    Pendry J B, Schurig D, Smith D R 2006 Science 312 1780

    [3]

    Kwon D H, Werner D H 2008 Appl. Phys. Lett. 92 013505

    [4]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977

    [5]

    Ma H, Qu S B, Xu Z, Zhang J Q, Wang J F 2009 Chin. Phys. B 18 1025

    [6]

    Wu Q, Zhang K, Meng FY, Li LW 2009 Acta Phys. Sin. 58 1619 (in Chinese) [吴群, 张狂, 孟繁义, 李乐伟 2009 物理学报 58 1619]

    [7]

    Guo P F, Li D, Dai Q, Fu Y Q 2013 Chin. Phys. B 22 054101

    [8]

    Smolyaninov I I, Smolyaninova V N, Kildishev A V, Shalaev V M 2009 Phys. Rev. Lett. 102 213901

    [9]

    Cummer S A, Popa B I, Schurig D, Smith D R, Pendry J B 2006 Phys. Rev. E 74 036621

    [10]

    Ruan Z, Yan M, Neff C W, Qiu M 2007 Phys. Rev. Lett. 99 113903

    [11]

    Luo XY, Liu DY, Yao LF, Dong JF 2014 Acta Phys. Sin. 63 084101 (in Chinese) [罗孝阳, 刘道亚, 姚丽芳, 董建峰 2014 物理学报 63 084101]

    [12]

    Cummer S A, Schurig D 2007 New J. Phys. 9 45

    [13]

    Chen H, Chan C T 2007 Appl. Phys. Lett. 91 183518

    [14]

    Cummer S A, Popa B I, Schurig D, Smith D R, Pendry J B, Rahm M, Starr A 2008 Phys. Rev. Lett. 100 024301

    [15]

    Cummer S A, Rahm M, Schurig D 2008 New J. Phys. 10 115025

    [16]

    Liang W C, Sánchez-Dehesa J 2007 J. Phys. 9 010450

    [17]

    Torrent D, Sánchez-Dehesa J 2008 New J. Phys. 10 063015

    [18]

    Farhat M, Guenneau S, Enoch S, Movchan A, Zolla F, Nicolet A 2008 New J. Phys. 10 115030

    [19]

    Norris A N 2008 Proc. R. Soc. A 464 2411

    [20]

    Hu J, Liu X N, Hu G K 2013 Wave Motion 170

    [21]

    Layman C J, Naify C J, Martin T P, Calvo D C, Orris G J 2013 Phys. Rev. Lett. 111 024302

    [22]

    Bckmann T, Thiel M, Kadic1 M, Schittny R, Wegener M 2014 Nature Communications 5 4130

    [23]

    Gao D B, Zeng X W 2012 Acta Phys. Sin. 61 184301 (in Chinese) [高东宝, 曾新吾 2012 物理学报 61 184301]

    [24]

    Cai L, Wen J H, Yu D L, Lu Z M, Wen X S 2014 Chin. Phys. Lett. 31 094303

    [25]

    Scandrett C L, Boisvert J E, Howarth T R 2010 J. Acoust. Soc. Am. 127 2856

    [26]

    Scandrett C L, Boisvert J E, Howarth T R 2011 Wave Motion. 48 505

    [27]

    Du G H, Zhu Z M, Gong X F 2012 Basic Acoustics (Nanjing: Nanjing University Press) (in Chinese) [杜功焕, 朱哲民, 龚秀芬 2012 声学基础(南京: 南京大学出版社)]

    [28]

    Jones D S 1986 Acoustic and Electromagnetic Waves (Oxford: Clarendon Press)

  • [1] 王浩, 姚能智, 王斌, 王学生. 流动隐身衣的均匀化设计与减阻特性研究. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220346
    [2] 王浩, 姚能智, 王斌, 王学生. 流动隐身衣的均匀化设计与减阻特性. 物理学报, 2022, 71(13): 134703. doi: 10.7498/aps.70.20220346
    [3] 蔡成欣, 陈韶赓, 王学梅, 梁俊燕, 王兆宏. 各向异性三维非对称双锥五模超材料的能带结构及品质因数. 物理学报, 2020, 69(13): 134302. doi: 10.7498/aps.69.20200364
    [4] 王飞, 魏兵. 含石墨烯分界面有耗分层介质的传播矩阵. 物理学报, 2019, 68(24): 244101. doi: 10.7498/aps.68.20190823
    [5] 陆智淼, 蔡力, 温激鸿, 温熙森. 基于五模材料的圆柱声隐身斗篷坐标变换设计. 物理学报, 2016, 65(17): 174301. doi: 10.7498/aps.65.174301
    [6] 李珊珊, 张昊, 白晋军, 刘伟伟, 常胜江. 隔行分层填充的太赫兹超高双折射多孔光纤. 物理学报, 2015, 64(15): 154201. doi: 10.7498/aps.64.154201
    [7] 张鹏, 张晓娟. 基于等效电流源的分层媒质目标反演研究. 物理学报, 2013, 62(16): 164201. doi: 10.7498/aps.62.164201
    [8] 张宇, 张晓娟, 方广有. 大尺度分层介质电特性参数的反演方法研究. 物理学报, 2013, 62(4): 044204. doi: 10.7498/aps.62.044204
    [9] 赵巧华, 孙绩华. 夏秋两季洱海、太湖表层混合层的深度变化特征及其机理分析. 物理学报, 2013, 62(3): 039203. doi: 10.7498/aps.62.039203
    [10] 张宇, 张晓娟, 方广有. 大尺度分层介质粗糙面电磁散射的特性研究. 物理学报, 2012, 61(18): 184203. doi: 10.7498/aps.61.184203
    [11] 沈惠杰, 温激鸿, 郁殿龙, 蔡力, 温熙森. 基于主动声学超材料的圆柱声隐身斗篷设计研究. 物理学报, 2012, 61(13): 134303. doi: 10.7498/aps.61.134303
    [12] 高东宝, 曾新吾. 基于各向同性材料的层状椭圆柱形声隐身衣设计. 物理学报, 2012, 61(18): 184301. doi: 10.7498/aps.61.184301
    [13] 吴宇航, 郑宁, 文平平, 李粮生, 史庆藩, 孙刚. 准二维二元混合颗粒动态循环反转分层的体积效应. 物理学报, 2011, 60(2): 024501. doi: 10.7498/aps.60.024501
    [14] 赵啦啦, 刘初升, 闫俊霞, 徐志鹏. 颗粒分层过程三维离散元法模拟研究. 物理学报, 2010, 59(3): 1870-1876. doi: 10.7498/aps.59.1870
    [15] 赵永志, 江茂强, 郑津洋. 巴西果效应分离过程的计算颗粒力学模拟研究. 物理学报, 2009, 58(3): 1812-1818. doi: 10.7498/aps.58.1812
    [16] 赵永志, 程 易. 水平滚筒内二元颗粒体系径向分离模式的数值模拟研究. 物理学报, 2008, 57(1): 322-328. doi: 10.7498/aps.57.322
    [17] 沈自才, 沈 建, 刘世杰, 孔伟金, 邵建达, 范正修. 渐变折射率薄膜的分层评价探讨. 物理学报, 2007, 56(3): 1325-1328. doi: 10.7498/aps.56.1325
    [18] 梁子长, 金亚秋. 非均匀散射层矢量辐射传输(VRT)方程高阶散射解的迭代法. 物理学报, 2003, 52(2): 247-255. doi: 10.7498/aps.52.247
    [19] 郑宏兴, 葛德彪. 广义传播矩阵法分析分层各向异性材料对电磁波的反射与透射. 物理学报, 2000, 49(9): 1702-1705. doi: 10.7498/aps.49.1702
    [20] 张金标. 分层介质中金属栅的平面波散射. 物理学报, 1976, 25(2): 162-167. doi: 10.7498/aps.25.162
计量
  • 文章访问数:  5707
  • PDF下载量:  337
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-09
  • 修回日期:  2015-01-16
  • 刊出日期:  2015-07-05

/

返回文章
返回