搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

交联聚丙烯压电驻极体的压电性能及振动能量采集研究

武丽明 张晓青

引用本文:
Citation:

交联聚丙烯压电驻极体的压电性能及振动能量采集研究

武丽明, 张晓青

Piezoelectric property of cross-linked polypropylene piezoelectret and its application in vibration energy harvester

Wu Li-Ming, Zhang Xiao-Qing
PDF
导出引用
  • 以电子束辐照交联聚丙烯(IXPP)泡沫薄板为原材料, 首先利用热压工艺对微观结构进行改性, 然后采用电晕充电方法对样品实施极化处理, 使之具有压电效应, 成为压电驻极体. 通过准静态和动态压电系数d33、复电容谱, 以及等温衰减的测量, 研究了IXPP压电驻极体膜的机电耦合性能; 同时考察了基于IXPP压电驻极体膜的振动能量采集器在{3-3}模式下对环境振动能的俘获. 结果表明, IXPP压电驻极体的准静态压电系数d33可高达620 pC/N; 厚度方向的杨氏模量和品质因数(FOM, d33·g33)分别是0.7 MPa和11.2 GPa-1; 在50, 70和90℃下进行等温老化, 经过24 h后, IXPP压电驻极体膜的准静态压电系数d33分别降低到初始值的54%, 43%和29%; 采用面积为3.14 cm2的IXPP压电驻极体膜为换能元件, 当振子质量为25.6 g, 振动频率为820 Hz时, 振动能量采集器在匹配负载附近可以输出高达65 μW/g2的功率.
    Piezoelectrets, also known as ferroelectrets, are space-charge electrets based polymer foams with strong piezoelectric effect. The piezoelectric effect in piezoelectrets originates from the regularly arranged dipolar space charges in the polymer matrix, achieved by properly charging the specific foam structure. The large figure of merit (FOM, d33·g33) in piezoelectrets implies that such kinds of materials are promising candidates in energy harvesters. In this article, the electron-irradiated cross-linked polypropylene (IXPP) foam sheets are rendered piezoelectric (i.e. to become piezoelectrets) by modification of the microstructure using hot-pressing process and polarization using corona charging at room temperature. The electromechanical properties of the fabricated IXPP piezoelectrets are investigated by measurements of quasi- and dynamic piezoelectric d33 coefficients, dielectric resonance spectrum, and isothermal decay at elevated temperatures. The energy harvesting from vibrations by using the IXPP piezoelectret films, at various vibration frequencies, load resistances, and seismic masses, are also studied. Results indicate that the quasi-static piezoelectric d33 coefficients of IXPP films up to 620 pC/N can be achieved. The variation of quasi-static piezoelectric d33 coefficient is dependent on the applied pressures, from 0.1 to 1.3 kPa, while it shows good linearity at larger pressures from 1.3 to 15 kPa. The typical values of Young's modulus in the thickness direction and the figure of merit (FOM) are 0.7 MPa and 11.2 GPa-1, respectively. The d33 coefficients will drop to 54%, 43%, 29% of the initial values after annealing the samples for 24 h at 50, 70, 90℃, respectively. At an exciting frequency of 820 Hz, the normalized output power of 65 μW/g2 is obtained from an IXPP film with an area of 3.14 cm2 and a seismic mass of 25.6 g around the optimum load resistance. Such thin, light and flexible IXPP piezoelectret films may be applied in vibration energy harvesters for powering low-power electronic devices.
      通信作者: 张晓青, x.zhang@tongji.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51173137和11374232)和中央高校基本科研(批准号: 同济大学2014)资助的课题.
      Corresponding author: Zhang Xiao-Qing, x.zhang@tongji.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51173137, 11374232), and the Fundamental Research Fund for the Central Universities, China (Grant No. Tongji University 2014).
    [1]

    Erturk A, Inman D J 2011 Piezoelectric Energy Harvesting (New York: John Wiley & Sons) pp19-48

    [2]

    Mitcheson P D, Rao G K, Green T C 2008 Proc. IEEE 96 1457

    [3]

    Cook-Chennault K A, Thambi N, Sastry A M 2008 Smart Mater. Struct. 17 043001

    [4]

    Guan M J, Liao W H 2007 Smart Mater. Struct. 16 498

    [5]

    Okamoto H, Suzuki T, Mori K, Cao Z, Onuki T, Kuwano H 2007 Int'l. J. Energy Res. 33 1180

    [6]

    Fan K Q, Xu C H, Wang W D, Fang Y 2014 Chinese Phys. B 23 084501

    [7]

    Wu S H, Du L D, Kong D Y, Ping H Y, Fang Z, Zhao Z 2014 Chin. Phys. B 23 044302

    [8]

    Bauer S, Gerhard-Multhaupt R, Sessler G M 2004 Phys. Today 57 37

    [9]

    Zhang X Q, Zhang X W, You Q, Sessler G M 2014 Macromol. Mater. Eng. 299 290

    [10]

    Cao G X, Zhang X, Sun Z L, Wang X W, Lou K X, Xia Z F 2010 Acta Phys. Sin. 59 6514 (in Chinese) [曹功勋, 张晓青, 孙转兰, 王学文, 娄可行, 夏钟福 2010 物理学报 59 6514]

    [11]

    Sessler G M, Hillbenrand J 2013 Appl. Phys. Lett. 103 122904

    [12]

    Zhang T L, Huang X, Zheng K, Zhang X W, Wang Y J, Wu L M, Zhang X Q, Zheng J, Zhu B 2014 Acta Phys. Sin. 63 157703 (in Chinese) [张添乐, 黄曦, 郑凯, 张欣梧, 王宇杰, 武丽明, 张晓青, 郑洁, 朱彪 2014 物理学报 63 157703]

    [13]

    Xu R, Kim S G 2012 PowerMEMS 2012 Atlanta, GA, USA, December 2-5, 2012, pp.464-467

    [14]

    Anton S R, Farinholt K M 2012 Proc. of SPIE 8341 83410G

    [15]

    Pondrom P, Hillenbrand J, Sessler G M, Bös J, Melz T 2014 Appl. Phys. Lett. 104 172901

    [16]

    Anton S R, Farinholt K M, Erturk A 2014 J. Intell. Mater. Syst. Struct. 25 1681

    [17]

    Zhang X, Huang J, Chen J, Wan Z, Wang S, Xia Z 2007 Appl. Phys. Lett. 91 182901

    [18]

    Zhang X, Pan D, Wang X, Cao G, Sun Z, Xia Z 2011 J. Electrostact 69 554

    [19]

    Hillenbrand J, Sessler G M 2000 IEEE Trans. Dielectr. Electr. Insul. 7 537

    [20]

    Kressmann R 2001 J. Appl. Phys. 90 3489

    [21]

    Hillenbrand J, Sessler G M 2004 IEEE Trans. Dielectr. Electr. Insul. 11 72

    [22]

    Zhang X, Wu L M, Sessler G M, "Energy harvesting from vibration with cross-linked polypropylene piezoelectrets" to be published

    [23]

    Zhang X, Hillenbrand J, Sessler G M 2007 J. Appl. Phys. 101 054114

    [24]

    Neugschwandtner G S, Schwödiauer R, Vieytes M, Bauer-Gogonea S, Bauer S, Hillenbrand J, Kressmann R, Sessler G M, Paajanen M, Lekkala J 2000 Appl. Phys. Lett. 77 3827

    [25]

    Mellinger A 2003 IEEE Trans. Dielectr. Electr. Insul. 10 842

    [26]

    DuToit N E, Wardle B L, Kim S 2005 Intergr. Ferroelectr. 71 121

  • [1]

    Erturk A, Inman D J 2011 Piezoelectric Energy Harvesting (New York: John Wiley & Sons) pp19-48

    [2]

    Mitcheson P D, Rao G K, Green T C 2008 Proc. IEEE 96 1457

    [3]

    Cook-Chennault K A, Thambi N, Sastry A M 2008 Smart Mater. Struct. 17 043001

    [4]

    Guan M J, Liao W H 2007 Smart Mater. Struct. 16 498

    [5]

    Okamoto H, Suzuki T, Mori K, Cao Z, Onuki T, Kuwano H 2007 Int'l. J. Energy Res. 33 1180

    [6]

    Fan K Q, Xu C H, Wang W D, Fang Y 2014 Chinese Phys. B 23 084501

    [7]

    Wu S H, Du L D, Kong D Y, Ping H Y, Fang Z, Zhao Z 2014 Chin. Phys. B 23 044302

    [8]

    Bauer S, Gerhard-Multhaupt R, Sessler G M 2004 Phys. Today 57 37

    [9]

    Zhang X Q, Zhang X W, You Q, Sessler G M 2014 Macromol. Mater. Eng. 299 290

    [10]

    Cao G X, Zhang X, Sun Z L, Wang X W, Lou K X, Xia Z F 2010 Acta Phys. Sin. 59 6514 (in Chinese) [曹功勋, 张晓青, 孙转兰, 王学文, 娄可行, 夏钟福 2010 物理学报 59 6514]

    [11]

    Sessler G M, Hillbenrand J 2013 Appl. Phys. Lett. 103 122904

    [12]

    Zhang T L, Huang X, Zheng K, Zhang X W, Wang Y J, Wu L M, Zhang X Q, Zheng J, Zhu B 2014 Acta Phys. Sin. 63 157703 (in Chinese) [张添乐, 黄曦, 郑凯, 张欣梧, 王宇杰, 武丽明, 张晓青, 郑洁, 朱彪 2014 物理学报 63 157703]

    [13]

    Xu R, Kim S G 2012 PowerMEMS 2012 Atlanta, GA, USA, December 2-5, 2012, pp.464-467

    [14]

    Anton S R, Farinholt K M 2012 Proc. of SPIE 8341 83410G

    [15]

    Pondrom P, Hillenbrand J, Sessler G M, Bös J, Melz T 2014 Appl. Phys. Lett. 104 172901

    [16]

    Anton S R, Farinholt K M, Erturk A 2014 J. Intell. Mater. Syst. Struct. 25 1681

    [17]

    Zhang X, Huang J, Chen J, Wan Z, Wang S, Xia Z 2007 Appl. Phys. Lett. 91 182901

    [18]

    Zhang X, Pan D, Wang X, Cao G, Sun Z, Xia Z 2011 J. Electrostact 69 554

    [19]

    Hillenbrand J, Sessler G M 2000 IEEE Trans. Dielectr. Electr. Insul. 7 537

    [20]

    Kressmann R 2001 J. Appl. Phys. 90 3489

    [21]

    Hillenbrand J, Sessler G M 2004 IEEE Trans. Dielectr. Electr. Insul. 11 72

    [22]

    Zhang X, Wu L M, Sessler G M, "Energy harvesting from vibration with cross-linked polypropylene piezoelectrets" to be published

    [23]

    Zhang X, Hillenbrand J, Sessler G M 2007 J. Appl. Phys. 101 054114

    [24]

    Neugschwandtner G S, Schwödiauer R, Vieytes M, Bauer-Gogonea S, Bauer S, Hillenbrand J, Kressmann R, Sessler G M, Paajanen M, Lekkala J 2000 Appl. Phys. Lett. 77 3827

    [25]

    Mellinger A 2003 IEEE Trans. Dielectr. Electr. Insul. 10 842

    [26]

    DuToit N E, Wardle B L, Kim S 2005 Intergr. Ferroelectr. 71 121

  • [1] 曾闵, 罗颖, 江虹. 无线能量传输支持的设备到设备多播能量协作传输机制. 物理学报, 2022, 71(16): 168801. doi: 10.7498/aps.71.20220345
    [2] 张咪, 左西, 杨同青, 张晓青. 基于压电驻极体的微能量采集. 物理学报, 2020, 69(24): 247701. doi: 10.7498/aps.69.20200815
    [3] 刘亦轩, 李昭, 汤浩正, 逯景桐, 李敬锋, 龚文, 王轲. 晶粒尺寸对钙钛矿型压电陶瓷压电性能的影响. 物理学报, 2020, 69(21): 217704. doi: 10.7498/aps.69.20201079
    [4] 吴娟娟, 冷永刚, 乔海, 刘进军, 张雨阳. 窄带随机激励双稳压电悬臂梁响应机制与能量采集研究. 物理学报, 2018, 67(21): 210502. doi: 10.7498/aps.67.20180072
    [5] 谭丹, 冷永刚, 范胜波, 高毓璣. 外加磁场压电悬臂梁能量采集系统的磁化电流法磁力研究. 物理学报, 2015, 64(6): 060502. doi: 10.7498/aps.64.060502
    [6] 李海涛, 秦卫阳, 周志勇, 蓝春波. 带有分数阶阻尼的压电能量采集系统相干共振. 物理学报, 2014, 63(22): 220504. doi: 10.7498/aps.63.220504
    [7] 李海涛, 秦卫阳. 宽频随机激励下非线性压电能量采集器的相干共振. 物理学报, 2014, 63(12): 120505. doi: 10.7498/aps.63.120505
    [8] 张添乐, 黄曦, 郑凯, 张欣梧, 王宇杰, 武丽明, 张晓青, 郑洁, 朱彪. 极化电压对聚丙烯压电驻极体膜压电性能的影响. 物理学报, 2014, 63(15): 157703. doi: 10.7498/aps.63.157703
    [9] 唐炜, 王小璞, 曹景军. 非线性磁式压电振动能量采集系统建模与分析. 物理学报, 2014, 63(24): 240504. doi: 10.7498/aps.63.240504
    [10] 高毓璣, 冷永刚, 范胜波, 赖志慧. 弹性支撑双稳压电悬臂梁振动响应及能量采集研究. 物理学报, 2014, 63(9): 090501. doi: 10.7498/aps.63.090501
    [11] 张欣梧, 张晓青. 聚丙烯压电驻极体膜的压电和声学性能研究. 物理学报, 2013, 62(16): 167702. doi: 10.7498/aps.62.167702
    [12] 丁南, 唐新桂, 匡淑娟, 伍君博, 刘秋香, 何琴玉. 锰掺杂对Ba(Zr, Ti)O3陶瓷压电与介电性能的影响. 物理学报, 2010, 59(9): 6613-6619. doi: 10.7498/aps.59.6613
    [13] 孙琳, 褚君浩, 杨平雄, 冯楚德. Sr位Nd掺杂对SrBi2Nb2O9性能的影响及机理研究. 物理学报, 2009, 58(8): 5790-5797. doi: 10.7498/aps.58.5790
    [14] 张鹏锋, 夏钟福, 邱勋林, 王飞鹏, 吴贤勇. 充电参数对聚丙烯蜂窝膜驻极体压电性的影响. 物理学报, 2006, 55(2): 904-909. doi: 10.7498/aps.55.904
    [15] 曾 涛, 董显林, 毛朝梁, 梁瑞虹, 杨 洪. 孔隙率及晶粒尺寸对多孔PZT陶瓷介电和压电性能的影响及机理研究. 物理学报, 2006, 55(6): 3073-3079. doi: 10.7498/aps.55.3073
    [16] 邱勋林, 夏钟福, 安振连, 吴贤勇. 热膨胀处理的聚丙烯蜂窝膜驻极体的压电性. 物理学报, 2005, 54(1): 402-406. doi: 10.7498/aps.54.402
    [17] 张鹏锋, 夏钟福, 邱勋林, 吴贤勇. 聚丙烯蜂窝膜驻极体压电系数的测量及压电性的改善. 物理学报, 2005, 54(1): 397-401. doi: 10.7498/aps.54.397
    [18] 张丽娜, 赵苏串, 郑嘹赢, 李国荣, 殷庆瑞. 复合层状Bi7Ti4NbO21铁电陶瓷的结构与介电和压电性能研究. 物理学报, 2005, 54(5): 2346-2351. doi: 10.7498/aps.54.2346
    [19] 尹鑫, 吕孟凯, 李福奇. NH4IO3晶体的压电性能. 物理学报, 1989, 38(1): 124-127. doi: 10.7498/aps.38.124
    [20] 黄肇明, 庄培其, 姜祖涛, 于桂芳. ADP晶体压电性能的动态测量. 物理学报, 1966, 22(8): 911-918. doi: 10.7498/aps.22.911
计量
  • 文章访问数:  5665
  • PDF下载量:  220
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-07
  • 修回日期:  2015-05-04
  • 刊出日期:  2015-09-05

/

返回文章
返回