搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

B/N掺杂类直三角石墨烯纳米带器件引起的整流效应

陈鹰 胡慧芳 王晓伟 张照锦 程彩萍

B/N掺杂类直三角石墨烯纳米带器件引起的整流效应

陈鹰, 胡慧芳, 王晓伟, 张照锦, 程彩萍
PDF
导出引用
  • 基于密度泛函理论结合非平衡格林函数的方法, 研究了硼(氮)非对称掺杂类直三角石墨烯纳米带器件的电子输运性能. 计算结果表明: 单个硼或氮原子取代类直三角石墨烯纳米带顶点的碳原子后, 增强了体系的电导能力, 并且出现了新颖的整流效应. 分析表明: 这是由于硼氮掺杂类直三角石墨烯纳米带器件在正负偏压下分子能级的移动方向和前线分子轨道空间分布的不对称而产生的. 最重要的是, 当左右类直三角石墨烯纳米带的顶端原子同时被硼和氮掺杂后, 体系的整流效应显著增强, 而且出现负微分电阻效应.
      通信作者: 胡慧芳, guf68@hnu.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号: 2011CB932700)资助的课题.
    [1]

    Tsuji Y, Staykov A, Yoshizawa K 2012 J. Phys. Chem. C 116 2575

    [2]

    Wen S Z, Yang G C, Yan L K, Li H B, Su Z M 2013 Chem. Phys. Chem. 14 610

    [3]

    Zhao P, Liu D S, Zhang Y, Su Y, Liu H Y, Li S J, Chen G 2012 J. Phys. Chem. C 116 7968

    [4]

    Aviram A, A Ratner M 1974 Chem. Phys. Lett. 29 277

    [5]

    Stokbro K, Taylor J 2003 J. Am. Chem. Soc. 125 3674

    [6]

    Ford M J, Hoft R C, Mcdonagh A M, Cortie M B 2008 J. Phys.: Condens. Matter 20 374106

    [7]

    Stadler R, Geskin V, Cornil J 2008 J. Phys.: Condens. Matter 20 374105

    [8]

    Yee S K, Sun J, Darancet P, Tilley T D, Majumdar A, Neaton J B, Segalman R A 2011 ACS Nano 5 9256

    [9]

    Zheng X H, Wang R N, Song L L, Dai Z X, Wang X L, Zeng Z 2009 Appl. Phys. Lett. 95 123109

    [10]

    Kang J, Wu F M, Li J B 2011 Appl. Phys. Lett. 98 083109

    [11]

    Li J, Li Z Y, Zhou G, Liu Z R, Wu J, Gu B L, Ihm J, Duan W H 2010 Phys. Rev. B 82 115410

    [12]

    Li Z, Yang J, Hou J G 2008 J. Am. Chem. Soc. 130 4224

    [13]

    He J, Chen K Q, Fan Z Q, Tang L M, Hu W P 2010 Appl. Phys. Lett. 97 193305

    [14]

    Zhang Z Q, Liu B, Hwang K C, Gao H J 2011 Appl. Phys. Lett. 98 121909

    [15]

    Campos L C, Manfrinato V R, Yamagishi J D S, Kong J, Herrero P J 2009 Nano Lett. 9 2600

    [16]

    Beljakov I, Meded V, Symalla F, Fink K, Shallcross S, Wenzel W 2013 J. Nanotechnol. 4 441

    [17]

    Zeng H, Zhao J, Wei J W, Xu D H, Leburton J P 2012 Curr. Appl. Phys. 12 1611

    [18]

    Liu H M, B Wang H, Zhao J W, Kiguchi M 2013 J. Comp. Chem. 34 360

    [19]

    Zeng H, Zhao J, Wei J W, Zeng X L, Xu Y 2012 Phys. Let. A 376 3277

    [20]

    Deng X Q, Zhang Z H, Tang G P, Fan Z Q, Qiu M, Guo C 2012 Appl. Phys. Lett. 100 063107

    [21]

    Zeng J, Chen K Q, He J, Zhang X J, Sun C Q 2011 J. Phys. Chem. C 115 25072

    [22]

    Zhao P, Liu D S, Zhang Y, Su Y, Liu H Y, Li S J, Chen G 2012 Solid State Commun. 152 1061

    [23]

    Yan S L, Long M Q, Zhang X J, He J, Xu H, Chen K Q 2014 Chem. Phys. Lett. 608 28

    [24]

    Zhao P, Liu D S, Chen G 2013 Solid State Commun. 160 13

    [25]

    Zeng M G, Shen L, Yang M, Zhang C, Feng Y P 2011 Appl. Phys. Lett. 98 053101

    [26]

    Pei T, Xu H, Zhang Z, Wang Z, Liu Y, Li Y, Wang S, Peng L M 2011 Appl. Phys. Lett. 99 113102

    [27]

    Wang Z F, Li Q, Shi Q W, Wang X, Hou J G, Zheng H, Chen J 2008 Appl. Phys. Lett. 92 133119

    [28]

    Zeng J, Chen K Q, He J, Fan Z Q, Zhang X J 2011 J. Appl. Phys. 109 124502

    [29]

    Lin Q, Chen Y H, Wu J B, Kong Z M 2011 Acta Phys. Sin. 60 097103(in Chinese) [林琦, 陈余行, 吴建宝, 孔宗敏 2011 物理学报 60 097103]

    [30]

    Zhang Z H, Deng X Q, Tan X Q, Qiu M, Pan J B 2010 Appl. Phys. Lett. 97 183105

    [31]

    Deng X Q, Tang G P, Guo C 2012 Phys. Lett. A 376 1839

  • [1]

    Tsuji Y, Staykov A, Yoshizawa K 2012 J. Phys. Chem. C 116 2575

    [2]

    Wen S Z, Yang G C, Yan L K, Li H B, Su Z M 2013 Chem. Phys. Chem. 14 610

    [3]

    Zhao P, Liu D S, Zhang Y, Su Y, Liu H Y, Li S J, Chen G 2012 J. Phys. Chem. C 116 7968

    [4]

    Aviram A, A Ratner M 1974 Chem. Phys. Lett. 29 277

    [5]

    Stokbro K, Taylor J 2003 J. Am. Chem. Soc. 125 3674

    [6]

    Ford M J, Hoft R C, Mcdonagh A M, Cortie M B 2008 J. Phys.: Condens. Matter 20 374106

    [7]

    Stadler R, Geskin V, Cornil J 2008 J. Phys.: Condens. Matter 20 374105

    [8]

    Yee S K, Sun J, Darancet P, Tilley T D, Majumdar A, Neaton J B, Segalman R A 2011 ACS Nano 5 9256

    [9]

    Zheng X H, Wang R N, Song L L, Dai Z X, Wang X L, Zeng Z 2009 Appl. Phys. Lett. 95 123109

    [10]

    Kang J, Wu F M, Li J B 2011 Appl. Phys. Lett. 98 083109

    [11]

    Li J, Li Z Y, Zhou G, Liu Z R, Wu J, Gu B L, Ihm J, Duan W H 2010 Phys. Rev. B 82 115410

    [12]

    Li Z, Yang J, Hou J G 2008 J. Am. Chem. Soc. 130 4224

    [13]

    He J, Chen K Q, Fan Z Q, Tang L M, Hu W P 2010 Appl. Phys. Lett. 97 193305

    [14]

    Zhang Z Q, Liu B, Hwang K C, Gao H J 2011 Appl. Phys. Lett. 98 121909

    [15]

    Campos L C, Manfrinato V R, Yamagishi J D S, Kong J, Herrero P J 2009 Nano Lett. 9 2600

    [16]

    Beljakov I, Meded V, Symalla F, Fink K, Shallcross S, Wenzel W 2013 J. Nanotechnol. 4 441

    [17]

    Zeng H, Zhao J, Wei J W, Xu D H, Leburton J P 2012 Curr. Appl. Phys. 12 1611

    [18]

    Liu H M, B Wang H, Zhao J W, Kiguchi M 2013 J. Comp. Chem. 34 360

    [19]

    Zeng H, Zhao J, Wei J W, Zeng X L, Xu Y 2012 Phys. Let. A 376 3277

    [20]

    Deng X Q, Zhang Z H, Tang G P, Fan Z Q, Qiu M, Guo C 2012 Appl. Phys. Lett. 100 063107

    [21]

    Zeng J, Chen K Q, He J, Zhang X J, Sun C Q 2011 J. Phys. Chem. C 115 25072

    [22]

    Zhao P, Liu D S, Zhang Y, Su Y, Liu H Y, Li S J, Chen G 2012 Solid State Commun. 152 1061

    [23]

    Yan S L, Long M Q, Zhang X J, He J, Xu H, Chen K Q 2014 Chem. Phys. Lett. 608 28

    [24]

    Zhao P, Liu D S, Chen G 2013 Solid State Commun. 160 13

    [25]

    Zeng M G, Shen L, Yang M, Zhang C, Feng Y P 2011 Appl. Phys. Lett. 98 053101

    [26]

    Pei T, Xu H, Zhang Z, Wang Z, Liu Y, Li Y, Wang S, Peng L M 2011 Appl. Phys. Lett. 99 113102

    [27]

    Wang Z F, Li Q, Shi Q W, Wang X, Hou J G, Zheng H, Chen J 2008 Appl. Phys. Lett. 92 133119

    [28]

    Zeng J, Chen K Q, He J, Fan Z Q, Zhang X J 2011 J. Appl. Phys. 109 124502

    [29]

    Lin Q, Chen Y H, Wu J B, Kong Z M 2011 Acta Phys. Sin. 60 097103(in Chinese) [林琦, 陈余行, 吴建宝, 孔宗敏 2011 物理学报 60 097103]

    [30]

    Zhang Z H, Deng X Q, Tan X Q, Qiu M, Pan J B 2010 Appl. Phys. Lett. 97 183105

    [31]

    Deng X Q, Tang G P, Guo C 2012 Phys. Lett. A 376 1839

  • [1] 闫瑞, 吴泽文, 谢稳泽, 李丹, 王音. 导线非共线的分子器件输运性质的第一性原理研究. 物理学报, 2018, 67(9): 097301. doi: 10.7498/aps.67.20172221
    [2] 陈伟, 陈润峰, 李永涛, 俞之舟, 徐宁, 卞宝安, 李兴鳌, 汪联辉. 基于石墨烯电极的Co-Salophene分子器件的自旋输运. 物理学报, 2017, 66(19): 198503. doi: 10.7498/aps.66.198503
    [3] 李桂琴. 硼-碳和硼-氮量子点器件的输运特性研究. 物理学报, 2010, 59(7): 4985-4988. doi: 10.7498/aps.59.4985
    [4] 胡海龙, 张 琨, 王振兴, 孔 涛, 胡 颖, 王晓平. 硫醇自组装分子膜末端基团对其电荷输运特性的影响. 物理学报, 2007, 56(3): 1674-1679. doi: 10.7498/aps.56.1674
    [5] 王建元, 陈长乐, 高国棉, 韩立安, 金克新. La0.82Te0.18MnO3薄膜的输运特性和光诱导效应. 物理学报, 2006, 55(12): 6617-6621. doi: 10.7498/aps.55.6617
    [6] 郭宝增. 用全带Monte Carlo方法模拟纤锌矿相GaN和ZnO材料的电子输运特性. 物理学报, 2002, 51(10): 2344-2348. doi: 10.7498/aps.51.2344
    [7] 安义鹏, 杨传路, 王美山, 马晓光, 王德华. C20F20分子电子输运性质的第一性原理研究. 物理学报, 2010, 59(3): 2010-2015. doi: 10.7498/aps.59.2010
    [8] 胡海龙, 张 琨, 王振兴, 王晓平. 自组装硫醇分子膜电输运特性的导电原子力显微镜研究. 物理学报, 2006, 55(3): 1430-1434. doi: 10.7498/aps.55.1430
    [9] 邓小清, 杨昌虎, 张华林. B/N掺杂对于石墨烯纳米片电子输运的影响. 物理学报, 2013, 62(18): 186102. doi: 10.7498/aps.62.186102
    [10] 李永辉, 闫强, 周丽萍, 韩琴. 金纳米线接触构型相关的双重负微分电阻与整流效应. 物理学报, 2015, 64(5): 057301. doi: 10.7498/aps.64.057301
    [11] 李巧华, 张振华, 刘新海, 邱明, 丁开和. 分子电子器件简化模型的电子透射谱的计算. 物理学报, 2009, 58(10): 7204-7210. doi: 10.7498/aps.58.7204
    [12] 王利光, 陈 蕾, 郁鼎文, 李 勇, Terence K. S. W.. 单分子器件与电极间耦合界面对电子传输的影响. 物理学报, 2007, 56(11): 6526-6530. doi: 10.7498/aps.56.6526
    [13] 郭宝增, 宫 娜, 师建英, 王志宇. 纤锌矿相GaN空穴输运特性的Monte Carlo模拟研究. 物理学报, 2006, 55(5): 2470-2475. doi: 10.7498/aps.55.2470
    [14] 晏潜, 陆翠敏, 冯电稳, 杨巍巍, 赵捷, 刘庆锁, 马永昌. K0.8Fe2Se2晶体c轴向载流子输运特性的研究. 物理学报, 2014, 63(3): 037401. doi: 10.7498/aps.63.037401
    [15] 肖春涛, 韩立安, 薛德胜, 赵俊慧, H.Kunkel, G.Williams. La0.67Pb0.33MnO3的磁性及输运特性. 物理学报, 2003, 52(5): 1245-1249. doi: 10.7498/aps.52.1245
    [16] 何昱辰, 刘向军. 基于基液连续假设的大体系Cu-H2O纳米流体输运特性的模拟研究. 物理学报, 2015, 64(19): 196601. doi: 10.7498/aps.64.196601
    [17] 邱明, 张振华, 邓小清. 碳链输运对基团吸附的敏感性分析. 物理学报, 2010, 59(6): 4162-4169. doi: 10.7498/aps.59.4162
    [18] 陈 钦, 李统藏, 石勤伟, 王晓平. 开口悬挂端对单壁碳纳米管电子输运特性的影响. 物理学报, 2005, 54(8): 3962-3966. doi: 10.7498/aps.54.3962
    [19] 牛书通, 潘鹏, 朱炳辉, 宋涵宇, 金屹磊, 禹楼飞, 韩承志, 邵剑雄, 陈熙萌. 30 keV H+在聚碳酸酯微孔膜中动态输运过程的实验和理论研究. 物理学报, 2018, 67(20): 203401. doi: 10.7498/aps.67.20181062
    [20] 王淑芳, 陈珊珊, 陈景春, 闫国英, 乔小齐, 刘富强, 王江龙, 丁学成, 傅广生. 脉冲激光沉积温度及氧压对Bi2Sr2Co2Oy热电薄膜晶体结构与电输运性能的影响. 物理学报, 2012, 61(6): 066804. doi: 10.7498/aps.61.066804
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1011
  • PDF下载量:  165
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-21
  • 修回日期:  2015-06-02
  • 刊出日期:  2015-10-05

B/N掺杂类直三角石墨烯纳米带器件引起的整流效应

  • 1. 湖南大学物理与微电子科学学院, 长沙 410082;湖南大学微纳光电器件及应用教育部重点实验室, 长沙 410082
  • 通信作者: 胡慧芳, guf68@hnu.edu.cn
    基金项目: 

    国家重点基础研究发展计划(批准号: 2011CB932700)资助的课题.

摘要: 基于密度泛函理论结合非平衡格林函数的方法, 研究了硼(氮)非对称掺杂类直三角石墨烯纳米带器件的电子输运性能. 计算结果表明: 单个硼或氮原子取代类直三角石墨烯纳米带顶点的碳原子后, 增强了体系的电导能力, 并且出现了新颖的整流效应. 分析表明: 这是由于硼氮掺杂类直三角石墨烯纳米带器件在正负偏压下分子能级的移动方向和前线分子轨道空间分布的不对称而产生的. 最重要的是, 当左右类直三角石墨烯纳米带的顶端原子同时被硼和氮掺杂后, 体系的整流效应显著增强, 而且出现负微分电阻效应.

English Abstract

参考文献 (31)

目录

    /

    返回文章
    返回