搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

梯度耦合下神经元网络中靶波和螺旋波的诱发研究

徐莹 王春妮 靳伍银 马军

梯度耦合下神经元网络中靶波和螺旋波的诱发研究

徐莹, 王春妮, 靳伍银, 马军
PDF
导出引用
导出核心图
  • 神经系统内数量众多的神经元电活动的群体行为呈现一定的节律性和自组织性. 当网络局部区域存在异质性或者受到持续周期性刺激, 则在网络内诱发靶波, 且这些靶波如'节拍器'可调制介质中行波的诱发和传播. 基于Hindmarsh-Rose 神经元模型构造了最近邻连接下的二维神经元网络, 研究在非均匀耦合下神经元网络内有序波的诱发问题. 在研究中, 选定网络中心区域的耦合强度最大, 从中心向边界的神经元之间的耦合强度则按照阶梯式下降. 研究结果表明, 在恰当的耦合梯度下, 神经元网络内诱发的靶波或螺旋波可以占据整个网络, 并有效调制神经元网络的群体电活动, 使得整个网络呈现有序性. 特别地, 当初始值为随机值时, 梯度耦合也可以诱发稳定的有序态. 这种梯度耦合对网络群体行为调制的研究结果有助于理解神经元网络的自组织行为.
      通信作者: 马军, hyperchaos@163.com
    • 基金项目: 国家自然科学基金(批准号: 11265008, 11365014)资助的课题.
    [1]

    Shilnikov S 2012 Nonlinear Dyn. SI 68 305

    [2]

    Rulkov N F 2002 Phys. Rev. E 65 041922

    [3]

    Storace M, Linaro D, de Lange E 2008 Chaos 18 033128

    [4]

    Huang X H, Hu G 2014 Chinese Phys. B 23 0108703

    [5]

    Wang M L, Wang J S 2015 Acta Phys. Sin. 64 108701(in Chinese) [王美丽, 王俊松 2015 物理学报 64 108701]

    [6]

    Jiang M, Zhu J, Liu Y P, Yang M P, Tian C P, Jiang S, Wang Y H, Guo H, Wang K Y, Shu Y S 2012 PLoS Biol. 10 e1001324

    [7]

    Morris C, Lecar H 1981 Biophys. J. 35 193

    [8]

    Hindmarsh J L, Rose R M 1984 Proc. R. Soc. Lond B Biol. Sci. 221 87

    [9]

    Ibarz B, Casado J M, Sanjun M A F 2011 Phys. Rep. 501 1

    [10]

    Zhang LS, Gu W F, Hu G, Mi Y Y 2014 Chinese Phys. B 23 0108902

    [11]

    Kitajima H, Yoshihara T 2012 Physica D 241 1804

    [12]

    Jia B 2014 Chin. Phys. B 23 050510

    [13]

    Storace M, Linaro D, de Lange E 2008 Chaos 18 033128

    [14]

    Wig G S, Schlaggar B L, Petersen S E 2011 Ann N. Y. Acad. Sci. 1224 126

    [15]

    Wang H X, Wang Q Y, Zheng Y H 2014 Sci. China Tech. Sci. 57 872

    [16]

    Torrealdea FJ, Sarasola C, d'Anjou A 2009 Chaos, Solitons Fract. 40 60

    [17]

    Yu L C, Liu L W 2014 Phys. Rev. E 89 032725

    [18]

    Wang R B, Zhang Z K, Qu J Y, Cao J T 2011 IEEE T. Neural. Networ. 22 1097

    [19]

    Ma J, Song X L, Jin W Y, Wang C N 2015 Chaos, Solition. Fract. 80 31

    [20]

    Jia B, Gu H G, Song S L 2013 Sci. China Phys. Mech. 43 518

    [21]

    Gu H G, Chen S G 2014 Sci. China Tech. Sci 57 864

    [22]

    Tang J, Luo J M, Ma J 2013 PLoS One 8 080324

    [23]

    Yu Y G, Liu F, Wang W 2001 Biol. Cybern. 84 227

    [24]

    Wang Q Y, Zhang H H, Perc M, Chen G R 2012 Commun. Nonlinear Sci. Numer. Simulat. 17 3979

    [25]

    Perc M 2008 Phys. Rev. E 78 036105

    [26]

    Yılmaz E, Uzuntarla M, Ozer M, Perc M 2013 Physica A 392 5735

    [27]

    Zhang J Q, Wang C D, Wang M S, Huang S F 2011 Nerocomput. 74 2961

    [28]

    Wang Q Y, Zheng Y H, Ma J 2013 Chaos Solitons Fractals 56 19

    [29]

    Zeltser L M, Seeley R J, Tschoep M H 2012 Nature Neurosci. 15 1336

    [30]

    Elbasiouny Sherif M 2014 J. Appl. Physiol. 117 1243

    [31]

    Yang Z Q, Hao L J 2014 Sci. China Tech. Sci. 57 885

    [32]

    Wang Q Y, Chen G R, Perc M 2011 PLoS One 6 e15851

    [33]

    Xie Y, Kang Y M, Liu Y, Wu Y 2014 Sci. China Tech. Sci. 57 914

    [34]

    Jiao X F, Zhu D F 2014 Sci. China Tech. Sci. 57 923

    [35]

    Gu H G, Chen S G 2014 Sci. China Tech. Sci. 57 864

    [36]

    Qin H X, Wu Y, Wang C N, Ma J 2015 Commun. Nonlinear Sci. Numer. Simulat. 23 164

    [37]

    Sun X J, Shi X 2014 Sci. China Tech. Sci. 57 879

    [38]

    Baghdadi G, Jafari S, Sprott J C, Towhidkhah F, Hashemi Golpayegani M R 2015 Commun. Nonlinear Sci. Numer. Simulat. 20 174

    [39]

    Ren G D, Wu G, Ma J, Chen Y 2015 Acta Phys. Sin. 64 058702(in Chinese) [任国栋, 武刚, 马军, 陈旸 2015 物理学报 64 058702]

    [40]

    Qin H X, Ma J, Jin W Y, Wang C N 2014 Sci. China Tech. Sci. 57 936

    [41]

    Zhang L S, Liao X H, Mi Y Y, Qian Y, Hu G 2014 Chin. Phys. B 23 078906

    [42]

    Li J J, Wu Y, Du M M, Liu W M 2015 Acta Phys. Sin. 64 030503(in Chinese) [李佳佳, 吴莹, 独盟盟, 刘伟明 2015 物理学报 64 030503]

    [43]

    Ma J, Wang C N, Ying H P, Chu R T 2013 Sci. China Phys. Mech. Astro. 56 1126

    [44]

    Pan J T, Cai M C, Li B W, Zhang H 2013 Phys. Rev. E 87 062907

    [45]

    Gao X, Zhang H, Zykov V, Bodenschatz E 2014 New J. Phys. 89 022920

    [46]

    Li B W, Zhang H, Ying H P 2009 Phys. Rev. E 79 026220

    [47]

    Ma J, Wu Y, Wu N J, Guo H Y 2013 Sci. China Phys. Mech. Astro. 56 952

    [48]

    Ma J, Liu Q R, Ying H P, Wu Y 2013 Commun. Nonlinear Sci. Numer. Simulat. 18 1665

  • [1]

    Shilnikov S 2012 Nonlinear Dyn. SI 68 305

    [2]

    Rulkov N F 2002 Phys. Rev. E 65 041922

    [3]

    Storace M, Linaro D, de Lange E 2008 Chaos 18 033128

    [4]

    Huang X H, Hu G 2014 Chinese Phys. B 23 0108703

    [5]

    Wang M L, Wang J S 2015 Acta Phys. Sin. 64 108701(in Chinese) [王美丽, 王俊松 2015 物理学报 64 108701]

    [6]

    Jiang M, Zhu J, Liu Y P, Yang M P, Tian C P, Jiang S, Wang Y H, Guo H, Wang K Y, Shu Y S 2012 PLoS Biol. 10 e1001324

    [7]

    Morris C, Lecar H 1981 Biophys. J. 35 193

    [8]

    Hindmarsh J L, Rose R M 1984 Proc. R. Soc. Lond B Biol. Sci. 221 87

    [9]

    Ibarz B, Casado J M, Sanjun M A F 2011 Phys. Rep. 501 1

    [10]

    Zhang LS, Gu W F, Hu G, Mi Y Y 2014 Chinese Phys. B 23 0108902

    [11]

    Kitajima H, Yoshihara T 2012 Physica D 241 1804

    [12]

    Jia B 2014 Chin. Phys. B 23 050510

    [13]

    Storace M, Linaro D, de Lange E 2008 Chaos 18 033128

    [14]

    Wig G S, Schlaggar B L, Petersen S E 2011 Ann N. Y. Acad. Sci. 1224 126

    [15]

    Wang H X, Wang Q Y, Zheng Y H 2014 Sci. China Tech. Sci. 57 872

    [16]

    Torrealdea FJ, Sarasola C, d'Anjou A 2009 Chaos, Solitons Fract. 40 60

    [17]

    Yu L C, Liu L W 2014 Phys. Rev. E 89 032725

    [18]

    Wang R B, Zhang Z K, Qu J Y, Cao J T 2011 IEEE T. Neural. Networ. 22 1097

    [19]

    Ma J, Song X L, Jin W Y, Wang C N 2015 Chaos, Solition. Fract. 80 31

    [20]

    Jia B, Gu H G, Song S L 2013 Sci. China Phys. Mech. 43 518

    [21]

    Gu H G, Chen S G 2014 Sci. China Tech. Sci 57 864

    [22]

    Tang J, Luo J M, Ma J 2013 PLoS One 8 080324

    [23]

    Yu Y G, Liu F, Wang W 2001 Biol. Cybern. 84 227

    [24]

    Wang Q Y, Zhang H H, Perc M, Chen G R 2012 Commun. Nonlinear Sci. Numer. Simulat. 17 3979

    [25]

    Perc M 2008 Phys. Rev. E 78 036105

    [26]

    Yılmaz E, Uzuntarla M, Ozer M, Perc M 2013 Physica A 392 5735

    [27]

    Zhang J Q, Wang C D, Wang M S, Huang S F 2011 Nerocomput. 74 2961

    [28]

    Wang Q Y, Zheng Y H, Ma J 2013 Chaos Solitons Fractals 56 19

    [29]

    Zeltser L M, Seeley R J, Tschoep M H 2012 Nature Neurosci. 15 1336

    [30]

    Elbasiouny Sherif M 2014 J. Appl. Physiol. 117 1243

    [31]

    Yang Z Q, Hao L J 2014 Sci. China Tech. Sci. 57 885

    [32]

    Wang Q Y, Chen G R, Perc M 2011 PLoS One 6 e15851

    [33]

    Xie Y, Kang Y M, Liu Y, Wu Y 2014 Sci. China Tech. Sci. 57 914

    [34]

    Jiao X F, Zhu D F 2014 Sci. China Tech. Sci. 57 923

    [35]

    Gu H G, Chen S G 2014 Sci. China Tech. Sci. 57 864

    [36]

    Qin H X, Wu Y, Wang C N, Ma J 2015 Commun. Nonlinear Sci. Numer. Simulat. 23 164

    [37]

    Sun X J, Shi X 2014 Sci. China Tech. Sci. 57 879

    [38]

    Baghdadi G, Jafari S, Sprott J C, Towhidkhah F, Hashemi Golpayegani M R 2015 Commun. Nonlinear Sci. Numer. Simulat. 20 174

    [39]

    Ren G D, Wu G, Ma J, Chen Y 2015 Acta Phys. Sin. 64 058702(in Chinese) [任国栋, 武刚, 马军, 陈旸 2015 物理学报 64 058702]

    [40]

    Qin H X, Ma J, Jin W Y, Wang C N 2014 Sci. China Tech. Sci. 57 936

    [41]

    Zhang L S, Liao X H, Mi Y Y, Qian Y, Hu G 2014 Chin. Phys. B 23 078906

    [42]

    Li J J, Wu Y, Du M M, Liu W M 2015 Acta Phys. Sin. 64 030503(in Chinese) [李佳佳, 吴莹, 独盟盟, 刘伟明 2015 物理学报 64 030503]

    [43]

    Ma J, Wang C N, Ying H P, Chu R T 2013 Sci. China Phys. Mech. Astro. 56 1126

    [44]

    Pan J T, Cai M C, Li B W, Zhang H 2013 Phys. Rev. E 87 062907

    [45]

    Gao X, Zhang H, Zykov V, Bodenschatz E 2014 New J. Phys. 89 022920

    [46]

    Li B W, Zhang H, Ying H P 2009 Phys. Rev. E 79 026220

    [47]

    Ma J, Wu Y, Wu N J, Guo H Y 2013 Sci. China Phys. Mech. Astro. 56 952

    [48]

    Ma J, Liu Q R, Ying H P, Wu Y 2013 Commun. Nonlinear Sci. Numer. Simulat. 18 1665

  • [1] 赵龙, 杨继平, 郑艳红. 神经元网络螺旋波诱发机理研究. 物理学报, 2013, 62(2): 028701. doi: 10.7498/aps.62.028701
    [2] 胡柏林, 马军, 李凡, 蒲忠胜. 神经元网络中分布式电流诱导靶波机理研究. 物理学报, 2013, 62(5): 058701. doi: 10.7498/aps.62.058701
    [3] 陈 勇, 靳伍银, 马 军, 李延龙. 随机相位扰动抑制激发介质中漂移的螺旋波. 物理学报, 2007, 56(4): 2456-2465. doi: 10.7498/aps.56.2456
    [4] 韦海明, 唐国宁. 交替行为对螺旋波影响的数值模拟研究. 物理学报, 2011, 60(4): 040504. doi: 10.7498/aps.60.040504
    [5] 孙晓娟, 杨白桦, 吴晔, 肖井华. 异质神经元的排列对环形耦合神经元网络频率同步的影响. 物理学报, 2014, 63(18): 180507. doi: 10.7498/aps.63.180507
    [6] 马军, 谢振博, 陈江星. 热敏神经元网络中螺旋波死亡和破裂的数值模拟. 物理学报, 2012, 61(3): 038701. doi: 10.7498/aps.61.038701
    [7] 汪芃, 李倩昀, 黄志精, 唐国宁. 在兴奋-抑制混沌神经元网络中有序波的自发形成. 物理学报, 2018, 67(17): 170501. doi: 10.7498/aps.67.20180506
    [8] 周振玮, 陈醒基, 田涛涛, 唐国宁. 耦合可激发介质中螺旋波的控制研究. 物理学报, 2012, 61(21): 210506. doi: 10.7498/aps.61.210506
    [9] 陈醒基, 田涛涛, 周振玮, 胡一博, 唐国宁. 通过被动介质耦合的两螺旋波的同步. 物理学报, 2012, 61(21): 210509. doi: 10.7498/aps.61.210509
    [10] 陈醒基, 乔成功, 王利利, 周振玮, 田涛涛, 唐国宁. 间接延迟耦合可激发介质中螺旋波的演化. 物理学报, 2013, 62(12): 128201. doi: 10.7498/aps.62.128201
    [11] 张国勇, 陈 勇, 甘正宁, 马 军. 小世界网络上螺旋波失稳的研究. 物理学报, 2008, 57(9): 5400-5406. doi: 10.7498/aps.57.5400
    [12] 李伟恒, 黎维新, 潘飞, 唐国宁. 两层耦合可激发介质中螺旋波转变为平面波. 物理学报, 2014, 63(20): 208201. doi: 10.7498/aps.63.208201
    [13] 汪芃, 李倩昀, 唐国宁. Hindmarsh-Rose神经元阵列自发产生螺旋波的研究. 物理学报, 2018, 67(3): 030502. doi: 10.7498/aps.67.20172140
    [14] 乔成功, 王利利, 李伟恒, 唐国宁. 钾扩散耦合引起的心脏中螺旋波的变化. 物理学报, 2013, 62(19): 198201. doi: 10.7498/aps.62.198201
    [15] 高继华, 谢伟苗, 高加振, 杨海朋, 戈早川. 耦合复金兹堡-朗道(Ginzburg-Landau)方程中的模螺旋波. 物理学报, 2012, 61(13): 130506. doi: 10.7498/aps.61.130506
    [16] 唐冬妮, 张旭, 任卫, 唐国宁. 可激发介质中环形异质介质导致自维持靶波. 物理学报, 2010, 59(8): 5313-5318. doi: 10.7498/aps.59.5313
    [17] 高继华, 史文茂, 汤艳丰, 肖骐, 杨海涛. 局部不均匀性对时空系统振荡频率的影响. 物理学报, 2016, 65(15): 150503. doi: 10.7498/aps.65.150503
    [18] 黄志精, 李倩昀, 白婧, 唐国宁. 在具有排斥耦合的神经元网络中有序斑图的熵测量. 物理学报, 2019, 68(11): 110503. doi: 10.7498/aps.68.20190231
    [19] 邝玉兰, 唐国宁. 心脏中的螺旋波和时空混沌的抑制研究. 物理学报, 2012, 61(10): 100504. doi: 10.7498/aps.61.100504
    [20] 董丽芳, 白占国, 贺亚峰. 非均匀可激发介质中的稀密螺旋波. 物理学报, 2012, 61(12): 120509. doi: 10.7498/aps.61.120509
  • 引用本文:
    Citation:
计量
  • 文章访问数:  591
  • PDF下载量:  366
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-20
  • 修回日期:  2015-06-04
  • 刊出日期:  2015-10-05

梯度耦合下神经元网络中靶波和螺旋波的诱发研究

  • 1. 兰州理工大学物理系, 兰州 730050;
  • 2. 兰州理工大学机电学院, 兰州 730050
  • 通信作者: 马军, hyperchaos@163.com
    基金项目: 

    国家自然科学基金(批准号: 11265008, 11365014)资助的课题.

摘要: 神经系统内数量众多的神经元电活动的群体行为呈现一定的节律性和自组织性. 当网络局部区域存在异质性或者受到持续周期性刺激, 则在网络内诱发靶波, 且这些靶波如'节拍器'可调制介质中行波的诱发和传播. 基于Hindmarsh-Rose 神经元模型构造了最近邻连接下的二维神经元网络, 研究在非均匀耦合下神经元网络内有序波的诱发问题. 在研究中, 选定网络中心区域的耦合强度最大, 从中心向边界的神经元之间的耦合强度则按照阶梯式下降. 研究结果表明, 在恰当的耦合梯度下, 神经元网络内诱发的靶波或螺旋波可以占据整个网络, 并有效调制神经元网络的群体电活动, 使得整个网络呈现有序性. 特别地, 当初始值为随机值时, 梯度耦合也可以诱发稳定的有序态. 这种梯度耦合对网络群体行为调制的研究结果有助于理解神经元网络的自组织行为.

English Abstract

参考文献 (48)

目录

    /

    返回文章
    返回