搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

等离子体对含硼两相流扩散燃烧特性的影响

张鹏 洪延姬 丁小雨 沈双晏 冯喜平

等离子体对含硼两相流扩散燃烧特性的影响

张鹏, 洪延姬, 丁小雨, 沈双晏, 冯喜平
PDF
导出引用
导出核心图
  • 为排除来流空气对含硼燃气的掺混效应, 研究等离子体对含硼富燃料推进剂在补燃室二次燃烧过程的影响, 建立了含硼两相流平行进气扩散燃烧物理模型. 利用高速摄影仪拍摄了含硼燃气在补燃室二次燃烧的火焰图像, 分析了该物理模型的扩散燃烧特性和硼颗粒的二次点火距离. 采用硼颗粒的King点火模型、有限速度/涡耗散模型、颗粒轨道模型和RNG k-ε模型以及等离子体模型, 模拟了一定条件下等离子体对含硼两相流扩散燃烧过程的影响. 结果表明, 依据含硼燃气二次燃烧图像得到的硼颗粒二次点火距离, 与数值模拟结果基本一致, 保证了该物理模型和计算方法的可靠性. 含硼两相流经过等离子体区域后, 硼颗粒在运动轨迹上颗粒温度明显增加, 颗粒直径明显减小, B2O3的质量分数分布区域明显扩增, 70%的硼颗粒在到达补燃室2/3尺寸前燃烧效率已达到100%, 硼颗粒充分燃烧释放出更多热量导致中心流线区域温度增加近1/2, 可见等离子体可以明显强化含硼两相流的燃烧过程, 提高硼颗粒的燃烧效率.
    • 基金项目: 国家自然科学基金(批准号: 11372356)资助的课题.
    [1]

    Beckstead M W, Puduppakkam K, Thakre P, Yang V 2007 Prog. Energ. Combust. 33 497

    [2]

    Yu D, Kong C D, Zhuo J K, Yao Q, Li S Q 2015 J. Engineer. Thermophys. 36 922 (in Chinese) [于丹, 孔成栋, 卓建坤, 姚强, 李水清 2015 工程热物理学报 36 922]

    [3]

    Fry R S 2004 J. Propul. Power 20 1

    [4]

    Jain A, Anthonysamy S, Ananthasivan K 2010 Thermochim. Acta 500 1

    [5]

    Macek A, Semple J M 1969 Combust. Sci. Technol. 1 181

    [6]

    Ao W, Yang W J, Han Z J, Liu J Z, Zhou J H, Cen K F 2012 J. Solid Rocket Technol. 35 361 (in Chinese) [敖文, 杨卫娟, 韩志江, 刘建忠, 周俊虎, 岑可法 2012 固体火箭技术 35 361]

    [7]

    King M K 1982 J. Spacecraft Rockets 19 294

    [8]

    Young G, Sullivan K, Zachariah M R, Yu K 2009 Combust. Flame 156 322

    [9]

    Wang Y H, Li B X, Hu S Q 2004 Chin. J. Explos. Propel. 27 44 (in Chinese) [王英红, 李葆萱, 胡松起 2004 火炸药学报 2004 27 44]

    [10]

    Liu J, Li J X, Feng X P, Zheng Y 2011 J. Propulsion Technol. 32 355 (in Chinese) [刘杰, 李进贤, 冯喜平, 郑亚 2011 推进技术 32 355]

    [11]

    Hu J X 2006 Ph. D Dissertation (Changsha: National University of Defense Technology) (in Chinese) [胡建新 2006 博士学位论文(长沙: 国防科技大学)]

    [12]

    Ju Y 2014 Adv. Mech. 44 20

    [13]

    Inomata T, Okazaki S, Moriwaki T, Suzuki M 1983 Combust. Flame 50 361

    [14]

    Starikovskaya S M, Kukaev E N, Kuksin A Y 2004 Combust. Flame 139 177

    [15]

    Starikovskaia S M, Kosarev I N, Popov N A, Starikovskii A Yu 2009 40th AIAA Plasmadynamics and Lasers Conference San Antonio, June 22-25, 2009 p3595

    [16]

    Starikovskiy A 2012 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition Nashville Tennessee, 2012 p244

    [17]

    Andrey S, Nickolay A 2013 Prog. Energ. Combust. 39 61

    [18]

    Sun W, Won S H, Ombrello T 2013 P. Combust. Inst. 34 847

    [19]

    Aleksandrov N L, Kindysheva S V, Kochetov I V 2014 Plasma Sources Sci. T. 23 015017

    [20]

    Zhang P, Hong Y J, Sheng S Y, Ding X Y 2014 High Volt. Engin. 40 2125 (in Chinese) [张鹏, 洪延姬, 沈双晏, 丁小雨 2014 高电压技术 40 2125]

    [21]

    Lan Y D 2011 Ph. D Dissertation (Xian: Air Force Engineering University) (in Chinese) [兰宇丹 2011 博士学位论文(西安: 空军工程大学)]

    [22]

    Xie Y S, Zhang X B, Yuan Y X, Zhou Y 2003 J. Propulsion Technol. 24 275 (in Chinese) [谢玉树, 张小兵, 袁亚雄, 周跃 2003 推进技术 24 275]

    [23]

    Hu J X, Xia Z X, Zhang W H, Fang Z B, Wang D Q, Huang L Y 2012 Int. J. Eng. Sci. 2012 160620

    [24]

    Hussmann B, Pfitzner M 2010 Combust. Flame 157 803

    [25]

    Hussmann B, Pfitzner M 2010 Combust. Flame 157 822

    [26]

    Shumlak U, Loverich J 2003 J. Comput. Phys. 187 620

  • [1]

    Beckstead M W, Puduppakkam K, Thakre P, Yang V 2007 Prog. Energ. Combust. 33 497

    [2]

    Yu D, Kong C D, Zhuo J K, Yao Q, Li S Q 2015 J. Engineer. Thermophys. 36 922 (in Chinese) [于丹, 孔成栋, 卓建坤, 姚强, 李水清 2015 工程热物理学报 36 922]

    [3]

    Fry R S 2004 J. Propul. Power 20 1

    [4]

    Jain A, Anthonysamy S, Ananthasivan K 2010 Thermochim. Acta 500 1

    [5]

    Macek A, Semple J M 1969 Combust. Sci. Technol. 1 181

    [6]

    Ao W, Yang W J, Han Z J, Liu J Z, Zhou J H, Cen K F 2012 J. Solid Rocket Technol. 35 361 (in Chinese) [敖文, 杨卫娟, 韩志江, 刘建忠, 周俊虎, 岑可法 2012 固体火箭技术 35 361]

    [7]

    King M K 1982 J. Spacecraft Rockets 19 294

    [8]

    Young G, Sullivan K, Zachariah M R, Yu K 2009 Combust. Flame 156 322

    [9]

    Wang Y H, Li B X, Hu S Q 2004 Chin. J. Explos. Propel. 27 44 (in Chinese) [王英红, 李葆萱, 胡松起 2004 火炸药学报 2004 27 44]

    [10]

    Liu J, Li J X, Feng X P, Zheng Y 2011 J. Propulsion Technol. 32 355 (in Chinese) [刘杰, 李进贤, 冯喜平, 郑亚 2011 推进技术 32 355]

    [11]

    Hu J X 2006 Ph. D Dissertation (Changsha: National University of Defense Technology) (in Chinese) [胡建新 2006 博士学位论文(长沙: 国防科技大学)]

    [12]

    Ju Y 2014 Adv. Mech. 44 20

    [13]

    Inomata T, Okazaki S, Moriwaki T, Suzuki M 1983 Combust. Flame 50 361

    [14]

    Starikovskaya S M, Kukaev E N, Kuksin A Y 2004 Combust. Flame 139 177

    [15]

    Starikovskaia S M, Kosarev I N, Popov N A, Starikovskii A Yu 2009 40th AIAA Plasmadynamics and Lasers Conference San Antonio, June 22-25, 2009 p3595

    [16]

    Starikovskiy A 2012 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition Nashville Tennessee, 2012 p244

    [17]

    Andrey S, Nickolay A 2013 Prog. Energ. Combust. 39 61

    [18]

    Sun W, Won S H, Ombrello T 2013 P. Combust. Inst. 34 847

    [19]

    Aleksandrov N L, Kindysheva S V, Kochetov I V 2014 Plasma Sources Sci. T. 23 015017

    [20]

    Zhang P, Hong Y J, Sheng S Y, Ding X Y 2014 High Volt. Engin. 40 2125 (in Chinese) [张鹏, 洪延姬, 沈双晏, 丁小雨 2014 高电压技术 40 2125]

    [21]

    Lan Y D 2011 Ph. D Dissertation (Xian: Air Force Engineering University) (in Chinese) [兰宇丹 2011 博士学位论文(西安: 空军工程大学)]

    [22]

    Xie Y S, Zhang X B, Yuan Y X, Zhou Y 2003 J. Propulsion Technol. 24 275 (in Chinese) [谢玉树, 张小兵, 袁亚雄, 周跃 2003 推进技术 24 275]

    [23]

    Hu J X, Xia Z X, Zhang W H, Fang Z B, Wang D Q, Huang L Y 2012 Int. J. Eng. Sci. 2012 160620

    [24]

    Hussmann B, Pfitzner M 2010 Combust. Flame 157 803

    [25]

    Hussmann B, Pfitzner M 2010 Combust. Flame 157 822

    [26]

    Shumlak U, Loverich J 2003 J. Comput. Phys. 187 620

  • [1] 杨杭生. 等离子体增强化学气相沉积法制备立方氮化硼薄膜过程中的表面生长机理. 物理学报, 2006, 55(8): 4238-4246. doi: 10.7498/aps.55.4238
    [2] 方传波, 夏智勋, 肖云雷, 胡建新, 刘道平. 考虑Stefan影响的单颗粒硼着火过程研究. 物理学报, 2013, 62(16): 164702. doi: 10.7498/aps.62.164702
    [3] 李洋, 苏婷, 梁宏, 徐江荣. 耦合界面力的两相流相场格子Boltzmann模型. 物理学报, 2018, 67(22): 224701. doi: 10.7498/aps.67.20181230
    [4] 赵俊英, 金宁德. 两相流相空间多元图重心轨迹动力学特征. 物理学报, 2012, 61(9): 094701. doi: 10.7498/aps.61.094701
    [5] 高忠科, 胡沥丹, 周婷婷, 金宁德. 两相流有限穿越可视图演化动力学研究. 物理学报, 2013, 62(11): 110507. doi: 10.7498/aps.62.110507
    [6] 王林, 夏智勋, 罗振兵, 周岩, 张宇. 两电极等离子体合成射流激励器工作特性研究. 物理学报, 2014, 63(19): 194702. doi: 10.7498/aps.63.194702
    [7] 宫 野, 刘金远, 王晓钢, 刘 悦, 马腾才, 吴 迪. 强流脉冲离子束烧蚀等离子体向背景气体中喷发的数值研究. 物理学报, 2007, 56(1): 333-337. doi: 10.7498/aps.56.333
    [8] 赵崇霄, 漆亮文, 闫慧杰, 王婷婷, 任春生. 放电参数对爆燃模式下同轴枪强流脉冲放电等离子体的影响. 物理学报, 2019, 68(10): 105203. doi: 10.7498/aps.68.20190218
    [9] 王裴, 孙海权, 邵建立, 秦承森, 李欣竹. 微喷颗粒与气体混合过程的数值模拟研究. 物理学报, 2012, 61(23): 234703. doi: 10.7498/aps.61.234703
    [10] 金宁德, 宗艳波, 王振亚, 董 芳. 两相流流型动力学特征多尺度递归定量分析. 物理学报, 2008, 57(10): 6145-6154. doi: 10.7498/aps.57.6145
  • 引用本文:
    Citation:
计量
  • 文章访问数:  394
  • PDF下载量:  117
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-09
  • 修回日期:  2015-05-11
  • 刊出日期:  2015-10-20

等离子体对含硼两相流扩散燃烧特性的影响

  • 1. 装备学院, 激光推进及其应用国家重点实验室, 北京 101416;
  • 2. 西北工业大学, 燃烧、热结构与内流场重点实验室, 西安 710072
    基金项目: 

    国家自然科学基金(批准号: 11372356)资助的课题.

摘要: 为排除来流空气对含硼燃气的掺混效应, 研究等离子体对含硼富燃料推进剂在补燃室二次燃烧过程的影响, 建立了含硼两相流平行进气扩散燃烧物理模型. 利用高速摄影仪拍摄了含硼燃气在补燃室二次燃烧的火焰图像, 分析了该物理模型的扩散燃烧特性和硼颗粒的二次点火距离. 采用硼颗粒的King点火模型、有限速度/涡耗散模型、颗粒轨道模型和RNG k-ε模型以及等离子体模型, 模拟了一定条件下等离子体对含硼两相流扩散燃烧过程的影响. 结果表明, 依据含硼燃气二次燃烧图像得到的硼颗粒二次点火距离, 与数值模拟结果基本一致, 保证了该物理模型和计算方法的可靠性. 含硼两相流经过等离子体区域后, 硼颗粒在运动轨迹上颗粒温度明显增加, 颗粒直径明显减小, B2O3的质量分数分布区域明显扩增, 70%的硼颗粒在到达补燃室2/3尺寸前燃烧效率已达到100%, 硼颗粒充分燃烧释放出更多热量导致中心流线区域温度增加近1/2, 可见等离子体可以明显强化含硼两相流的燃烧过程, 提高硼颗粒的燃烧效率.

English Abstract

参考文献 (26)

目录

    /

    返回文章
    返回