搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超薄高速率单结微晶硅薄膜电池及其叠层电池

白立沙 李天天 刘伯飞 黄茜 李宝璋 张德坤 孙建 魏长春 赵颖 张晓丹

超薄高速率单结微晶硅薄膜电池及其叠层电池

白立沙, 李天天, 刘伯飞, 黄茜, 李宝璋, 张德坤, 孙建, 魏长春, 赵颖, 张晓丹
PDF
导出引用
导出核心图
  • 采用甚高频等离子体增强化学气相沉积技术, 基于优化表面形貌及光电特性的溅射后腐蚀ZnO:Al衬底, 将通过调控工艺参数获得的器件质量级高速微晶硅(upc-Si:H )材料(沉积速率达10.57 /s)应用到微晶硅单结电池中, 获得了初始效率达7.49%的高速率超薄微晶硅单结太阳电池(本征层厚度为1.1 m). 并提出插入n型微晶硅和p型微晶硅的隧穿复合结, 实现了非晶硅顶电池和微晶硅底电池之间的低损电连接, 由此获得了初始效率高达12.03% (Voc=1.48 eV, Jsc=11.67 mA/cm2, FF=69.59%)的非晶硅/微晶硅超薄双结叠层电池(总厚度为1.48 m), 为实现低成本生产太阳电池奠定了基础.
      通信作者: 张晓丹, xdzhang@nankai.edu.cn
    • 基金项目: 国家高技术研究发展计划(批准号: 2013AA050302)、国家自然科学基金(批准号: 61474065, 61404074)、天津市应用基础与前沿技术研究计划重点项目(批准号: 15JCZDJC31300, 14JCQNJC02100)、江苏省科技支撑计划项目重点项目(批准号: BE2014147-3)和高等学校博士学科点专项科研基金(批准号: 20120031110039)资助的课题.
    [1]

    Shah A, Meier J, Vallat-Sauvain E, Droz C, Kroll U, Wyrsch N, Guillet J, Graf U 2002 Thin Solid Films 403-404 179

    [2]

    Klein S, Finger F, Carius R, Dylla T, Rech B, Grimm M, Houben L, Stutzmann M 2003 Thin Solid Films 430 202

    [3]

    Obermeyer P, Haase C, Stiebig H 2008 Appl. Phys. Lett. 92 181102

    [4]

    Veneri P D, Mercaldo L V, Usatii I 2013 Prog. Photovoltaics Res. Appl. 21 148

    [5]

    Muller J, Rech B, Springer J, Vanecek M 2004 Solar Energy 77 917

    [6]

    Meier J, Flckiger R, Keppner H, Shah A 1994 Appl. Phys. Lett. 65 860

    [7]

    Sobajima Y, Nakano S, Nishino M, Tanaka Y, Toyama T, Okamoto H 2008 J. Non-Cryst. Solids 354 2407

    [8]

    Mai Y, Klein S, Carius R, Wolff J, Lambertz A, Finger F, Geng X 2005 J. Appl. Phys. 97 114913

    [9]

    Vetterl O, Finger F, Carius R, Hapke P, Houben L, Kluth O, Lambertz A, Mck A, Rech B, Wagner H 2000 Sol. Energy Mater. Sol. Cells 62 97

    [10]

    Martins R, Macarico A, Ferreira I, Nunes R, Bicho A, Fortunato E 1998 Thin Solid Films 317 144

    [11]

    Kroll U, Meier J, Torres P, Pohl J, Shah A 1998 J. Non-Cryst. Solids 227 68

    [12]

    Veneri P D, Mercaldo L V, Minarini C, Privato C 2004 Thin Solid Films 451 269

    [13]

    Vetterl O, Gro A, Jana T, Ray S, Lambertz A, Carius R, Finger F 2002 J. Non-Cryst. Solids 299 772

    [14]

    Bai L, Liu B, Huang Q, Li B, Zhang D, Sun J, Wei C, Chen X, Wang G, Zhao Y, Zhang X 2015 Sol. Energy Mater. Sol. Cells 140 202

    [15]

    Han X Y 2009 Ph. D. Dissertation (Tianjin: Nankai University) (in Chinese) [韩晓艳 2009 博士学位论文 (天津: 南开大学)]

    [16]

    Yan B, Yue G, Yang J, Guha S, Williamson D L, Han D, Jiang C S 2004 Appl. Phys. Lett. 85 1955

    [17]

    Shah A 2010 Thin-film Silicon Solar Cells (Lausanne: EPFL Press) p241

    [18]

    Stuckelberger M, Billet A, Riesen Y, Boccard M, Despeisse M, Schttauf J W, Haug F J, Ballif C 2014 Prog. Photovoltaics Res. Appl. DOI: 10.1002/pip.2559

    [19]

    Hegedus S S, Kampas F, Xi J 1995 Appl. Phys. Lett. 67 813

    [20]

    Hou J Y, Arch J K, Fonash S J, et al. 1991 Conference Record of the Twenty Second IEEE Las Vegas, USA, October 7-11, 1991 p1260

  • [1]

    Shah A, Meier J, Vallat-Sauvain E, Droz C, Kroll U, Wyrsch N, Guillet J, Graf U 2002 Thin Solid Films 403-404 179

    [2]

    Klein S, Finger F, Carius R, Dylla T, Rech B, Grimm M, Houben L, Stutzmann M 2003 Thin Solid Films 430 202

    [3]

    Obermeyer P, Haase C, Stiebig H 2008 Appl. Phys. Lett. 92 181102

    [4]

    Veneri P D, Mercaldo L V, Usatii I 2013 Prog. Photovoltaics Res. Appl. 21 148

    [5]

    Muller J, Rech B, Springer J, Vanecek M 2004 Solar Energy 77 917

    [6]

    Meier J, Flckiger R, Keppner H, Shah A 1994 Appl. Phys. Lett. 65 860

    [7]

    Sobajima Y, Nakano S, Nishino M, Tanaka Y, Toyama T, Okamoto H 2008 J. Non-Cryst. Solids 354 2407

    [8]

    Mai Y, Klein S, Carius R, Wolff J, Lambertz A, Finger F, Geng X 2005 J. Appl. Phys. 97 114913

    [9]

    Vetterl O, Finger F, Carius R, Hapke P, Houben L, Kluth O, Lambertz A, Mck A, Rech B, Wagner H 2000 Sol. Energy Mater. Sol. Cells 62 97

    [10]

    Martins R, Macarico A, Ferreira I, Nunes R, Bicho A, Fortunato E 1998 Thin Solid Films 317 144

    [11]

    Kroll U, Meier J, Torres P, Pohl J, Shah A 1998 J. Non-Cryst. Solids 227 68

    [12]

    Veneri P D, Mercaldo L V, Minarini C, Privato C 2004 Thin Solid Films 451 269

    [13]

    Vetterl O, Gro A, Jana T, Ray S, Lambertz A, Carius R, Finger F 2002 J. Non-Cryst. Solids 299 772

    [14]

    Bai L, Liu B, Huang Q, Li B, Zhang D, Sun J, Wei C, Chen X, Wang G, Zhao Y, Zhang X 2015 Sol. Energy Mater. Sol. Cells 140 202

    [15]

    Han X Y 2009 Ph. D. Dissertation (Tianjin: Nankai University) (in Chinese) [韩晓艳 2009 博士学位论文 (天津: 南开大学)]

    [16]

    Yan B, Yue G, Yang J, Guha S, Williamson D L, Han D, Jiang C S 2004 Appl. Phys. Lett. 85 1955

    [17]

    Shah A 2010 Thin-film Silicon Solar Cells (Lausanne: EPFL Press) p241

    [18]

    Stuckelberger M, Billet A, Riesen Y, Boccard M, Despeisse M, Schttauf J W, Haug F J, Ballif C 2014 Prog. Photovoltaics Res. Appl. DOI: 10.1002/pip.2559

    [19]

    Hegedus S S, Kampas F, Xi J 1995 Appl. Phys. Lett. 67 813

    [20]

    Hou J Y, Arch J K, Fonash S J, et al. 1991 Conference Record of the Twenty Second IEEE Las Vegas, USA, October 7-11, 1991 p1260

  • [1] 张晓丹, 赵颖, 孙福和, 王世锋, 韩晓艳, 魏长春, 孙建, 耿新华, 熊绍珍. n型窗口层材料及其在高速沉积微晶硅太阳电池中的应用研究. 物理学报, 2009, 58(7): 5041-5045. doi: 10.7498/aps.58.5041
    [2] 韩安军, 孙云, 李志国, 李博研, 何静靖, 张毅, 刘玮. 低温超薄高效Cu(In, Ga)Se2太阳电池的实现. 物理学报, 2013, 62(4): 048401. doi: 10.7498/aps.62.048401
    [3] 张晓丹, 赵 颖, 高艳涛, 陈 飞, 朱 锋, 魏长春, 孙 建, 耿新华, 熊绍珍. 提高微晶硅薄膜太阳电池效率的研究. 物理学报, 2006, 55(12): 6697-6700. doi: 10.7498/aps.55.6697
    [4] 侯海生, 王光明, 李海鹏, 蔡通, 郭文龙. 超薄宽带平面聚焦超表面及其在高增益天线中的应用. 物理学报, 2016, 65(2): 027701. doi: 10.7498/aps.65.027701
    [5] 韩晓艳, 侯国付, 魏长春, 张晓丹, 戴志华, 李贵君, 孙建, 陈新亮, 张德坤, 薛俊明, 赵颖, 耿新华. 高速沉积本征微晶硅的优化及其在太阳电池中的应用. 物理学报, 2009, 58(6): 4254-4259. doi: 10.7498/aps.58.4254
    [6] 张勇, 刘艳, 吕斌, 王基庆, 张红英, 汤乃云. 前端接触势垒高度对非晶硅和微晶硅异质结太阳电池的影响. 物理学报, 2009, 58(4): 2829-2835. doi: 10.7498/aps.58.2829
    [7] 韩晓艳, 侯国付, 李贵君, 张晓丹, 袁育杰, 张德坤, 陈新亮, 魏长春, 孙 健, 耿新华. 低速p/i界面缓冲层对高速沉积微晶硅太阳电池性能的影响. 物理学报, 2008, 57(8): 5284-5289. doi: 10.7498/aps.57.5284
    [8] 赵 雷, 周春兰, 李海玲, 刁宏伟, 王文静. a-Si(n)/c-Si(p)异质结太阳电池薄膜硅背场的模拟优化. 物理学报, 2008, 57(5): 3212-3218. doi: 10.7498/aps.57.3212
    [9] 丁东, 杨仕娥, 陈永生, 郜小勇, 谷锦华, 卢景霄. Al纳米颗粒增强微晶硅薄膜太阳电池光吸收的模拟研究. 物理学报, 2015, 64(24): 248801. doi: 10.7498/aps.64.248801
    [10] 肖友鹏, 王涛, 魏秀琴, 周浪. 硅异质结太阳电池的物理机制和优化设计. 物理学报, 2017, 66(10): 108801. doi: 10.7498/aps.66.108801
    [11] 张晓宇, 张丽平, 马忠权, 刘正新. 硅锗量子阱结构在硅异质结太阳电池中应用的数值模拟. 物理学报, 2016, 65(13): 138801. doi: 10.7498/aps.65.138801
    [12] 廖显伯, 曾湘波, 徐艳月, 张世斌, 刁宏伟, 孔光临, 胡志华. 纳米硅(nc-Si:H )/晶体硅(c-Si)异质结太阳电池的数值模拟分析. 物理学报, 2003, 52(1): 217-224. doi: 10.7498/aps.52.217
    [13] 张晓丹, 孙福和, 许盛之, 王光红, 魏长春, 孙建, 侯国付, 耿新华, 熊绍珍, 赵颖. 单室沉积p-i-n型微晶硅薄膜太阳电池性能优化的研究. 物理学报, 2010, 59(2): 1344-1348. doi: 10.7498/aps.59.1344
    [14] 檀满林, 周丹丹, 符冬菊, 张维丽, 马清, 李冬霜, 陈建军, 张化宇, 王根平. 基于BiFeO3/ITO复合膜表面钝化的黑硅太阳电池性能研究. 物理学报, 2017, 66(16): 167701. doi: 10.7498/aps.66.167701
    [15] 郑建东, 牛锦超, 钟红仙, 龚自正, 曹燕. 太阳电池阵二级轻气炮超高速撞击特性研究. 物理学报, 2019, 68(22): 220201. doi: 10.7498/aps.68.20191132
    [16] 赵 颖, 高艳涛, 朱 锋, 魏长春, 孙 建, 耿新华, 张晓丹, 熊绍珍. 太阳电池用本征微晶硅材料的制备及其结构研究. 物理学报, 2005, 54(10): 4874-4878. doi: 10.7498/aps.54.4874
    [17] 曹宇, 张建军, 李天微, 黄振华, 马峻, 倪牮, 耿新华, 赵颖. 微晶硅锗太阳电池本征层纵向结构的优化. 物理学报, 2013, 62(3): 036102. doi: 10.7498/aps.62.036102
    [18] 曾广根, 黎兵, 郑家贵, 武莉莉, 张静全, 雷智, 李卫, 冯良桓. CdTe太阳电池前电极SnO2:F/SnO2复合薄膜性能分析. 物理学报, 2010, 59(10): 7437-7441. doi: 10.7498/aps.59.7437
    [19] 曹宇, 薛磊, 周静, 王义军, 倪牮, 张建军. 微晶硅锗薄膜作为近红外光吸收层在硅基薄膜太阳电池中的应用. 物理学报, 2016, 65(14): 146801. doi: 10.7498/aps.65.146801
    [20] 陈俊帆, 任慧志, 侯福华, 周忠信, 任千尚, 张德坤, 魏长春, 张晓丹, 侯国付, 赵颖. 钙钛矿/硅叠层太阳电池中平面a-Si:H/c-Si异质结底电池的钝化优化及性能提高. 物理学报, 2019, 68(2): 028101. doi: 10.7498/aps.68.20181759
  • 引用本文:
    Citation:
计量
  • 文章访问数:  412
  • PDF下载量:  176
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-05
  • 修回日期:  2015-07-21
  • 刊出日期:  2015-11-20

超薄高速率单结微晶硅薄膜电池及其叠层电池

  • 1. 南开大学光电子薄膜器件与技术研究所, 光电子薄膜器件与技术天津市重点实验室, 光电信息技术科学教育部重点实验室, 天津 300071;
  • 2. 天津化学化工协同创新中心, 天津 300072
  • 通信作者: 张晓丹, xdzhang@nankai.edu.cn
    基金项目: 

    国家高技术研究发展计划(批准号: 2013AA050302)、国家自然科学基金(批准号: 61474065, 61404074)、天津市应用基础与前沿技术研究计划重点项目(批准号: 15JCZDJC31300, 14JCQNJC02100)、江苏省科技支撑计划项目重点项目(批准号: BE2014147-3)和高等学校博士学科点专项科研基金(批准号: 20120031110039)资助的课题.

摘要: 采用甚高频等离子体增强化学气相沉积技术, 基于优化表面形貌及光电特性的溅射后腐蚀ZnO:Al衬底, 将通过调控工艺参数获得的器件质量级高速微晶硅(upc-Si:H )材料(沉积速率达10.57 /s)应用到微晶硅单结电池中, 获得了初始效率达7.49%的高速率超薄微晶硅单结太阳电池(本征层厚度为1.1 m). 并提出插入n型微晶硅和p型微晶硅的隧穿复合结, 实现了非晶硅顶电池和微晶硅底电池之间的低损电连接, 由此获得了初始效率高达12.03% (Voc=1.48 eV, Jsc=11.67 mA/cm2, FF=69.59%)的非晶硅/微晶硅超薄双结叠层电池(总厚度为1.48 m), 为实现低成本生产太阳电池奠定了基础.

English Abstract

参考文献 (20)

目录

    /

    返回文章
    返回