搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cu/Al引线键合界面金属间化合物生长过程的原位实验研究

杨庆龄 陈奕仪 吴幸 沈国瑞 孙立涛

Cu/Al引线键合界面金属间化合物生长过程的原位实验研究

杨庆龄, 陈奕仪, 吴幸, 沈国瑞, 孙立涛
PDF
导出引用
导出核心图
  • 铜引线键合由于在价格、电导率和热导率等方面的优势有望取代传统的金引线键合, 然而Cu/Al引线键合界面的金属间化合物(intermetallic compounds, IMC)的过量生长将增大接触电阻和降低键合强度, 从而影响器件的性能和可靠性. 针对以上问题, 本文基于原位高分辨透射电子显微镜技术, 研究了在50220 ℃退火温度下, Cu/Al引线键合界面IMC的生长问题, 实时观测到了Cu/Al IMC的动态生长及结构演变过程. 实验结果表明, 退火前颗粒状的Cu/Al IMC 分布在键合界面, 主要成分为Cu9Al4, 少量成分为CuAl2. 退火后Cu/Al IMC的成分是: 靠近Cu一端为Cu9Al4, 远离Cu的一端为CuAl2. 同时基于原位观测Cu/Al IMC的动态生长过程, 计算得到了Cu/Al IMC 不同温度下的反应速率和激活能, 给出了基于原位实验结果的Cu/Al IMC的生长公式, 为优化Cu/Al引线键合工艺和提高Cu/Al引线键合的可靠性提供了指导.
      通信作者: 孙立涛, slt@seu.edu.cn
    • 基金项目: 国家重点基础研究发展计划(973计划)(批准号: 2011CB707601)和国家自然科学基金(批准号: 51420105003, 113279028)资助的课题.
    [1]

    Khoury S L, Burkhard D J, Galloway D P, Scharr T A 1990 IEEE Electronic Components and Technology Conference Las Vegas, USA, May 20-23, 1990 p768

    [2]

    Mori S, Yoshida H, Uchiyama N 1988 Proceedings of the 38th IEEE Electronics Components Conference Los Angeles, USA, May 9-11, 1988 p539

    [3]

    Liu Y-L, Gui L-J, Jin S 2012 Chin. Phys. B21 096102

    [4]

    Hang C J 2008 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese) [杭春进 2008 博士学位论文 (哈尔滨: 哈尔滨工业大学)]

    [5]

    Nguyen L T, McDonald D, Danker A R, Ng P 1995 IEEE Trans. Compon. Packag. Manuf. Technol. A 18 423

    [6]

    Funamizu Y, Watanabe K 1971 Trans. Jpn. Inst. Met. 12 147

    [7]

    Kim H J, Lee J Y, Paik K W, Koh K W, Won J, Choe S, Lee J, Moon J T, Park Y J 2003 IEEE Trans. Compon. Packag. Technol. 26 367

    [8]

    Murali S, Srikanth N, Vath C J 2003 Mater. Res. Bull. 38 637

    [9]

    Murali S, Srikanth N, Charles J V III 2004 Mater. Lett. 58 3096

    [10]

    Ellis T W, Levine L, Wicen R, Ainouz L 2000 Proceedings of Semicon Conference Singapore, Singapore, May 8-11 p44

    [11]

    Lu Y H, Wang Y W, Appelt B K, Lai Y S, Kao C R 2011 IEEE 61 st Electronic Components and Technology Conference (ECTC) Lake Buena Vista, USA, May 31-June 3, 2011 p1481

    [12]

    Drozdov M, Gur G, Atzmon Z, Kaplan W D 2008 J. Mater. Sci. 243 6029

    [13]

    Tan Y Y, Yong F K 2010 IEEE 17th International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA), Singapore, Singapore, July 5-9, 2010 p1

    [14]

    Lee C C, Higgins L M 2010 Proceedings of IEEE 60th Electronic Components and Technology Conference (ECTC) Las Vegas, USA, June 1-4, 2010 p342

    [15]

    Chen J, Lai Y S, Wang Y W, Kao C R 2011 Microelectron. Reliab. 51 125

    [16]

    Zhang B, Wang T, Cong Y, Zhao M, Fan X, Wang J 2010 11th International Conference on Electronic Packaging Technology & High Density Packaging (ICEPT-HDP) Xi'an, China, August 16-19, 2010 p213

    [17]

    Xu H, Liu C, Vadim V, Silberschmidt V V, Chen Z 2010 J. Electron. Mater 39 124

    [18]

    Boettcher T, Rother M, Liedtke S, Ullrich M, Bollmann M, Pinkernelle A, Gruber D, Funke H J, Kaiser M, Kan L, Li M, Leung K, Li T, Farrugia M L, O'Halloran O, Petzold M, Ma Z B, Klengel R 2011 12th Electronics Packaging Technology Conference (EPTC) Singapore, Singapore, December 8-10, 2011 p585

  • [1]

    Khoury S L, Burkhard D J, Galloway D P, Scharr T A 1990 IEEE Electronic Components and Technology Conference Las Vegas, USA, May 20-23, 1990 p768

    [2]

    Mori S, Yoshida H, Uchiyama N 1988 Proceedings of the 38th IEEE Electronics Components Conference Los Angeles, USA, May 9-11, 1988 p539

    [3]

    Liu Y-L, Gui L-J, Jin S 2012 Chin. Phys. B21 096102

    [4]

    Hang C J 2008 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese) [杭春进 2008 博士学位论文 (哈尔滨: 哈尔滨工业大学)]

    [5]

    Nguyen L T, McDonald D, Danker A R, Ng P 1995 IEEE Trans. Compon. Packag. Manuf. Technol. A 18 423

    [6]

    Funamizu Y, Watanabe K 1971 Trans. Jpn. Inst. Met. 12 147

    [7]

    Kim H J, Lee J Y, Paik K W, Koh K W, Won J, Choe S, Lee J, Moon J T, Park Y J 2003 IEEE Trans. Compon. Packag. Technol. 26 367

    [8]

    Murali S, Srikanth N, Vath C J 2003 Mater. Res. Bull. 38 637

    [9]

    Murali S, Srikanth N, Charles J V III 2004 Mater. Lett. 58 3096

    [10]

    Ellis T W, Levine L, Wicen R, Ainouz L 2000 Proceedings of Semicon Conference Singapore, Singapore, May 8-11 p44

    [11]

    Lu Y H, Wang Y W, Appelt B K, Lai Y S, Kao C R 2011 IEEE 61 st Electronic Components and Technology Conference (ECTC) Lake Buena Vista, USA, May 31-June 3, 2011 p1481

    [12]

    Drozdov M, Gur G, Atzmon Z, Kaplan W D 2008 J. Mater. Sci. 243 6029

    [13]

    Tan Y Y, Yong F K 2010 IEEE 17th International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA), Singapore, Singapore, July 5-9, 2010 p1

    [14]

    Lee C C, Higgins L M 2010 Proceedings of IEEE 60th Electronic Components and Technology Conference (ECTC) Las Vegas, USA, June 1-4, 2010 p342

    [15]

    Chen J, Lai Y S, Wang Y W, Kao C R 2011 Microelectron. Reliab. 51 125

    [16]

    Zhang B, Wang T, Cong Y, Zhao M, Fan X, Wang J 2010 11th International Conference on Electronic Packaging Technology & High Density Packaging (ICEPT-HDP) Xi'an, China, August 16-19, 2010 p213

    [17]

    Xu H, Liu C, Vadim V, Silberschmidt V V, Chen Z 2010 J. Electron. Mater 39 124

    [18]

    Boettcher T, Rother M, Liedtke S, Ullrich M, Bollmann M, Pinkernelle A, Gruber D, Funke H J, Kaiser M, Kan L, Li M, Leung K, Li T, Farrugia M L, O'Halloran O, Petzold M, Ma Z B, Klengel R 2011 12th Electronics Packaging Technology Conference (EPTC) Singapore, Singapore, December 8-10, 2011 p585

  • [1] 沙莎, 王伟丽, 吴宇昊, 魏炳波. 深过冷条件下Co7Mo6金属间化合物的枝晶生长和维氏硬度研究. 物理学报, 2018, 67(4): 046402. doi: 10.7498/aps.67.20172156
    [2] 赵宁, 钟毅, 黄明亮, 马海涛, 刘小平. 热迁移对Cu/Sn/Cu焊点液-固界面Cu6Sn5生长动力学的影响. 物理学报, 2015, 64(16): 166601. doi: 10.7498/aps.64.166601
    [3] 曹永泽, 王强, 李国建, 马永会, 隋旭东, 赫冀成. 强磁场对不同厚度Fe-Ni纳米多晶薄膜的生长过程及磁性能的影响. 物理学报, 2015, 64(6): 067502. doi: 10.7498/aps.64.067502
    [4] 陈丽群, 于涛, 彭小芳, 刘健. 难熔元素钨在NiAl位错体系中的占位及对键合性质的影响. 物理学报, 2013, 62(11): 117101. doi: 10.7498/aps.62.117101
    [5] 满田囡, 张林, 项兆龙, 王文斌, 高建文, 王恩刚. 添加Ti对Al-Bi难混溶合金组织和性能的影响. 物理学报, 2018, 67(3): 036101. doi: 10.7498/aps.67.20172256
    [6] 郑晖, 申亮, 白彬, 孙博. NiAl化合物表面成分的准标度关系与偏离放大效应. 物理学报, 2012, 61(1): 016104. doi: 10.7498/aps.61.016104
    [7] 许北雪, 吴锦雷, 侯士敏, 张西尧, 刘惟敏, 薛增泉, 吴全德. 镧与真空沉积银纳米粒子的金属间化合. 物理学报, 2002, 51(7): 1649-1653. doi: 10.7498/aps.51.1649
    [8] 韩 逸, 班春燕, 巴启先, 王书晗, 崔建忠. 磁场对液态铝和固态铁界面微观组织的影响. 物理学报, 2005, 54(6): 2955-2960. doi: 10.7498/aps.54.2955
    [9] 张瑞林, 李 文, 陈岱民, 关振中. Ti-Al系金属间化合物力学性能的电子理论. 物理学报, 1998, 47(12): 2064-2073. doi: 10.7498/aps.47.2064
    [10] 陈治鹏, 马亚楠, 林雪玲, 潘凤春, 席丽莹, 马治, 郑富, 汪燕青, 陈焕铭. Nb掺杂-TiAl金属间化合物的电子结构与力学性能. 物理学报, 2017, 66(19): 196101. doi: 10.7498/aps.66.196101
    [11] 徐炜新, 李 雅, 陈玲燕, 张 哲, 吴永刚, 乔 轶. XPS研究Nd表面氧化物的生长过程. 物理学报, 2001, 50(1): 79-82. doi: 10.7498/aps.50.79
    [12] 吴红丽, 赵新青, 宫声凯. Nb掺杂影响NiTi金属间化合物电子结构的第一性原理计算. 物理学报, 2010, 59(1): 515-520. doi: 10.7498/aps.59.515
    [13] 马振宁, 蒋敏, 王磊. Mg-Y-Zn合金三元金属间化合物的电子结构及其相稳定性的第一性原理研究. 物理学报, 2015, 64(18): 187102. doi: 10.7498/aps.64.187102
    [14] 郭永翔, 黑祖昆, 吴玉琨, 郭可信. Ni-Zr非晶合金晶化的透射电子显微镜研究(Ⅰ) ——Ni67Zr33晶化过程中的亚稳相. 物理学报, 1986, 35(3): 359-364. doi: 10.7498/aps.35.359
    [15] 李贻杰, 熊光成, 甘子钊, 任琮欣, 邹世昌. Ar离子注入YBa2Cu3O7-x超导薄膜中微结构变化的透射电子显微镜研究. 物理学报, 1993, 42(3): 482-487. doi: 10.7498/aps.42.482
    [16] 王学森, 唐景昌, 汪雷. Si3N4/Si表面Si生长过程的扫描隧道显微镜研究. 物理学报, 2001, 50(3): 517-522. doi: 10.7498/aps.50.517
    [17] 王德宁, 王渭源. 化合物半导体中离子射程参数与化学键中离子特性间关系研究. 物理学报, 1989, 38(6): 923-930. doi: 10.7498/aps.38.923
    [18] 徐建华. Al3Y化合物的晶体结构与电子结构. 物理学报, 1990, 39(2): 278-281. doi: 10.7498/aps.39.278
    [19] 李方华, 赵建国, 陈维, 解思深, 曹宁, 郑家祺. Nd-Ba-Cu-O高温超导体的高分辨电子显微术研究. 物理学报, 1989, 38(3): 508-510. doi: 10.7498/aps.38.508
    [20] 黑祖昆, 郭永翔. Ni-Zr非晶合金晶化过程的透射电子显微镜研究(Ⅱ)——Ni67Zr33非晶合金晶化过程中出现的过渡区. 物理学报, 1989, 38(12): 2034-2038. doi: 10.7498/aps.38.2034
  • 引用本文:
    Citation:
计量
  • 文章访问数:  682
  • PDF下载量:  133
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-30
  • 修回日期:  2015-06-24
  • 刊出日期:  2015-11-05

Cu/Al引线键合界面金属间化合物生长过程的原位实验研究

  • 1. 东南大学-FEI纳皮米中心, 东南大学MEMS教育部重点实验室, 南京 210096;
  • 2. 多媒体大学, 马来西亚马六甲 75450
  • 通信作者: 孙立涛, slt@seu.edu.cn
    基金项目: 

    国家重点基础研究发展计划(973计划)(批准号: 2011CB707601)和国家自然科学基金(批准号: 51420105003, 113279028)资助的课题.

摘要: 铜引线键合由于在价格、电导率和热导率等方面的优势有望取代传统的金引线键合, 然而Cu/Al引线键合界面的金属间化合物(intermetallic compounds, IMC)的过量生长将增大接触电阻和降低键合强度, 从而影响器件的性能和可靠性. 针对以上问题, 本文基于原位高分辨透射电子显微镜技术, 研究了在50220 ℃退火温度下, Cu/Al引线键合界面IMC的生长问题, 实时观测到了Cu/Al IMC的动态生长及结构演变过程. 实验结果表明, 退火前颗粒状的Cu/Al IMC 分布在键合界面, 主要成分为Cu9Al4, 少量成分为CuAl2. 退火后Cu/Al IMC的成分是: 靠近Cu一端为Cu9Al4, 远离Cu的一端为CuAl2. 同时基于原位观测Cu/Al IMC的动态生长过程, 计算得到了Cu/Al IMC 不同温度下的反应速率和激活能, 给出了基于原位实验结果的Cu/Al IMC的生长公式, 为优化Cu/Al引线键合工艺和提高Cu/Al引线键合的可靠性提供了指导.

English Abstract

参考文献 (18)

目录

    /

    返回文章
    返回