搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超小型条纹管的动态特性研究

惠丹丹 田进寿 王俊锋 卢裕 温文龙 徐向晏

引用本文:
Citation:

超小型条纹管的动态特性研究

惠丹丹, 田进寿, 王俊锋, 卢裕, 温文龙, 徐向晏

Dynamic properties of a small-size streak tube

Hui Dan-Dan, Tian Jin-Shou, Wang Jun-Feng, Lu Yu, Wen Wen-Long, Xu Xiang-Yan
PDF
导出引用
  • 基于条纹相机的非推扫式激光雷达可以实现三维多光谱荧光及偏振成像, 克服了传统雷达技术中由于目标和搭载平台之间相对移动形成的图像畸变, 图像刷新率高, 也便于小型化. 本文针对这一新技术发展的需求设计了一款大面积(阴极有效面积 25)、超小型(阴极到荧光屏净尺寸为100 mm)、无栅网、球面阴极、球面荧光屏的条纹管, 利用电子轨迹追踪法理论分析了偏转板位置对偏转灵敏度和空间分辨率的影响. 动态分析演示了从阴极面狭缝上同时出发的光电子在条纹管内部不同飞行阶段的时间畸变过程, 给出了条纹管在扫描工作模式下狭缝像弯曲所对应的定量时间畸变值. 该条纹管极限时间分辨率优于30 ps, 在其阴极狭缝长28 mm的范围内, 边缘动态空间分辨率大于10 lp/mm, 阴极狭缝为30 mm50 m时条纹管的动态时间分辨率优于50 ps, 放大倍率为1.2.
    Scannerless (flash) lidar system based on streak camera is able to realize three-dimensional (3D) multi-spectral fluorescence imaging and 3D imaging polarimetry. Compared with conventional lidar system, the flash lidar system overcomes image distortions caused by the motion between the target and the sensor platform. Other advantages of the flash lidar system are higher image update rates and the potential for creating a miniaturized lidar system. To meet the requirements for developing this new technology, a super small-sized, large photocathode area and meshless streak tube with spherical cathode and screen is designed with the aid of computer simulation technology (CST) software. The tube with nearly 28 mm wide photocathode work area contains two electrostatic focusing lens, a pair of deflection plates, and a 50 mm diameter output screen. The external dimension of the tube is merely 50 mm100 mm. And its electromagnetic fields are calculated in the CST Particle Studio based on the finite integration theory. Some dynamic properties of the tube are analyzed via observing different electron trajectories launched from a number of different points on the cathode. The influences of the deflector position on deflection sensitivity and spatial resolution are analyzed. Increasing the distance between the deflector and the anode pin hole leads to a worse deflection sensitivity but a better spatial resolution. As for the temporal resolution, three electron pulses separated by 30 ps can be well resolved by the streak tube in the dynamic mode. Thus, the dynamic temporal resolution of the streak tube is better than 30 ps. And a 10 lp/mm spatial resolution across the 28 mm long slit on the photocathode can be obtained by estimating modulation transfer functions of the electron trajectories. Temporal distortions at the entire photocathode working area are evaluated, and the data reveal that the larger the photocathode working area, the bigger the temporal distortions are. Also, the temporal distortion is present mainly in the photocathode-to-deflection plates region. In addition, the slit image of the streak tube working in the dynamic mode is simulated and presented. The phenomenon that the slit image is curved due to the temporal distortion is analyzed. Two rectangular electron pulses separated by 50 ps are well resolved by the streak tube. Therefore, the temporal resolution of this small-size steak tube is better than 50 ps with a rectangular slit dimension of 30 mm50 m on the photocathode, and its electron-optic magnification is 1.2.
      通信作者: 田进寿, tianjs@opt.ac.cn
      Corresponding author: Tian Jin-Shou, tianjs@opt.ac.cn
    [1]

    Liu R, Tian J S, Li H, Wang Q Q, Wang C, Wen W L, Lu Y, Liu H L, Cao X B, Wang J F, Xu X Y, Wang X 2014 Acta Phys. Sin. 63 058501 (in Chinese) [刘蓉, 田进寿, 李昊, 王强强, 王超, 温文龙, 卢裕, 刘虎林, 曹希斌, 王俊锋, 徐向晏, 王兴 2014 物理学报 63 058501]

    [2]

    Zhu M, Tian J S, Wen W L, Wang J F, Cao X B, Lu Y, Xu X Y, Sai X F, Liu H L, Wang X, Li W H 2015 Acta Phys. Sin. 64 098501 (in Chinese) [朱敏, 田进寿, 温文龙, 王俊锋, 曹希斌, 卢裕, 徐向晏, 赛小锋, 刘虎林, 王兴, 李伟华 2015 物理学报 64 098501]

    [3]

    Gelbart A, Redman B C, Light R S, Schwartzlow C A, Griffis A J 2002 Proceedings of SPIE on Laser Radar Technology and Applications Orlando, USA, July 29, 2002 p9

    [4]

    Mclean J W 1999 Proceedings of SPIE on Airborne and In-Water Underwater Imaging Denver, Colorado, USA, October 28, 1999 p10

    [5]

    Gao J, Sun J F, Wang Q 2014 Optik 125 5199

    [6]

    Sun J F, Wang T J, Wang X F, Wei J S, Wang Q 2013 Optik 124 2674

    [7]

    Yang H R, Wu L, Wang X P, Chen C, Yu B, Yang B, Yuan L, Wu L P, Xue Z L, Li G P, Wu B N 2012 Appl. Opt. 51 8825

    [8]

    Gleckler A D 2000 Proceedings of SPIE on Laser Radar Technology and Applications Orlando, USA, September 5, 2000 p266

    [9]

    Gleckler A D, Gelbart A 2001 Proceedings of SPIE on Laser Radar Technology and Applications Orlando, USA, September 19, 2001 p175

    [10]

    Liu J, Wang Q, Li S, Cheng Y, Wei J 2009 Laser Phys. 19 115

    [11]

    Sun J F, Liu J B, Wang Q 2013 Optik 124 204

    [12]

    Tian Z S, Cui Z H, Zhang L T, Xu T C, Zhang Y C, Fu S Y 2014 Chin. Opt. Lett. 12 060015

    [13]

    Niu H 1983 Proceedings of SPIE on High Speed Photography and Photonics San Diego, March 1, 1983 p231

    [14]

    Weiland T 1996 Int. J. Numer. Model. Electron. Network. Dev. Field. 9 295

    [15]

    Hua Z Y, Gu C X 1993 Electron Optics (Shanghai: Fudan University Press) p241 (in Chinese) [华中一, 顾昌鑫 1993 电子光学 (上海: 复旦大学出版社)第 241 页]

    [16]

    Liu H B 2004 M. S. Dissertation (Xi'an: Xi'an Institute of Optics and Precision Mechanics of CAS) (in Chinese) [刘宏波 2004 硕士学位论文 (西安: 中国科学院西安光学精密机械研究所)]

    [17]

    Tian J S, Zhao B S, Wu J J, Zhao W, Liu Y Q, Zhang J 2006 Acta Phys. Sin. 55 3368 (in Chinese) [田进寿, 赵宝升, 吴建军, 赵卫, 刘运全, 张杰 2006 物理学报 55 3368]

  • [1]

    Liu R, Tian J S, Li H, Wang Q Q, Wang C, Wen W L, Lu Y, Liu H L, Cao X B, Wang J F, Xu X Y, Wang X 2014 Acta Phys. Sin. 63 058501 (in Chinese) [刘蓉, 田进寿, 李昊, 王强强, 王超, 温文龙, 卢裕, 刘虎林, 曹希斌, 王俊锋, 徐向晏, 王兴 2014 物理学报 63 058501]

    [2]

    Zhu M, Tian J S, Wen W L, Wang J F, Cao X B, Lu Y, Xu X Y, Sai X F, Liu H L, Wang X, Li W H 2015 Acta Phys. Sin. 64 098501 (in Chinese) [朱敏, 田进寿, 温文龙, 王俊锋, 曹希斌, 卢裕, 徐向晏, 赛小锋, 刘虎林, 王兴, 李伟华 2015 物理学报 64 098501]

    [3]

    Gelbart A, Redman B C, Light R S, Schwartzlow C A, Griffis A J 2002 Proceedings of SPIE on Laser Radar Technology and Applications Orlando, USA, July 29, 2002 p9

    [4]

    Mclean J W 1999 Proceedings of SPIE on Airborne and In-Water Underwater Imaging Denver, Colorado, USA, October 28, 1999 p10

    [5]

    Gao J, Sun J F, Wang Q 2014 Optik 125 5199

    [6]

    Sun J F, Wang T J, Wang X F, Wei J S, Wang Q 2013 Optik 124 2674

    [7]

    Yang H R, Wu L, Wang X P, Chen C, Yu B, Yang B, Yuan L, Wu L P, Xue Z L, Li G P, Wu B N 2012 Appl. Opt. 51 8825

    [8]

    Gleckler A D 2000 Proceedings of SPIE on Laser Radar Technology and Applications Orlando, USA, September 5, 2000 p266

    [9]

    Gleckler A D, Gelbart A 2001 Proceedings of SPIE on Laser Radar Technology and Applications Orlando, USA, September 19, 2001 p175

    [10]

    Liu J, Wang Q, Li S, Cheng Y, Wei J 2009 Laser Phys. 19 115

    [11]

    Sun J F, Liu J B, Wang Q 2013 Optik 124 204

    [12]

    Tian Z S, Cui Z H, Zhang L T, Xu T C, Zhang Y C, Fu S Y 2014 Chin. Opt. Lett. 12 060015

    [13]

    Niu H 1983 Proceedings of SPIE on High Speed Photography and Photonics San Diego, March 1, 1983 p231

    [14]

    Weiland T 1996 Int. J. Numer. Model. Electron. Network. Dev. Field. 9 295

    [15]

    Hua Z Y, Gu C X 1993 Electron Optics (Shanghai: Fudan University Press) p241 (in Chinese) [华中一, 顾昌鑫 1993 电子光学 (上海: 复旦大学出版社)第 241 页]

    [16]

    Liu H B 2004 M. S. Dissertation (Xi'an: Xi'an Institute of Optics and Precision Mechanics of CAS) (in Chinese) [刘宏波 2004 硕士学位论文 (西安: 中国科学院西安光学精密机械研究所)]

    [17]

    Tian J S, Zhao B S, Wu J J, Zhao W, Liu Y Q, Zhang J 2006 Acta Phys. Sin. 55 3368 (in Chinese) [田进寿, 赵宝升, 吴建军, 赵卫, 刘运全, 张杰 2006 物理学报 55 3368]

  • [1] 安腾远, 丁霄, 王秉中. 基于时间反演技术的复杂天线罩辐射波束畸变纠正. 物理学报, 2023, 72(3): 030401. doi: 10.7498/aps.72.20221767
    [2] 陶建飞, 夏勤智, 廖临谷, 刘杰, 刘小井. 强激光场原子电离光电子轨迹干涉全息理论及应用. 物理学报, 2022, 71(23): 233206. doi: 10.7498/aps.71.20221296
    [3] 林呈, 张华堂, 盛志浩, 余显环, 刘鹏, 徐竟文, 宋晓红, 胡师林, 陈京, 杨玮枫. 用推广的量子轨迹蒙特卡罗方法研究强场光电子全息. 物理学报, 2016, 65(22): 223207. doi: 10.7498/aps.65.223207
    [4] 惠丹丹, 田进寿, 卢裕, 王俊锋, 温文龙, 梁玲亮, 陈琳. 条纹变像管时间畸变的分析. 物理学报, 2016, 65(15): 158502. doi: 10.7498/aps.65.158502
    [5] 俞祖卿, 杨魏吉, 何峰. H2+在强激光脉冲作用下的电离率和原子核间距的关系. 物理学报, 2016, 65(20): 204202. doi: 10.7498/aps.65.204202
    [6] 张建, 高劲松, 徐念喜, 于淼. 基于混合周期栅网结构的频率选择表面设计研究. 物理学报, 2015, 64(6): 067302. doi: 10.7498/aps.64.067302
    [7] 梁善勇, 王江安, 张峰, 石晟玮, 马治国, 刘涛, 王雨虹. 基于尾流激光雷达的能量对消式大动态接收技术. 物理学报, 2012, 61(11): 110701. doi: 10.7498/aps.61.110701
    [8] 黄永宪, 冷劲松, 田修波, 吕世雄, 李垚. 等离子体浸没离子注入非导电聚合物的适应性及栅网诱导效应的研究. 物理学报, 2012, 61(15): 155206. doi: 10.7498/aps.61.155206
    [9] 李飞, 肖刘, 刘濮鲲, 易红霞, 万晓声. 栅控电子枪中轮辐栅网截止放大系数的研究. 物理学报, 2012, 61(7): 078502. doi: 10.7498/aps.61.078502
    [10] 熊宗元, 姚战伟, 王玲, 李润兵, 王谨, 詹明生. 对抛式冷原子陀螺仪中原子运动轨迹的控制. 物理学报, 2011, 60(11): 113201. doi: 10.7498/aps.60.113201
    [11] 刘 斌, 金伟其, 董立泉. 热成像系统前置栅网结构的衍射效应分析. 物理学报, 2008, 57(9): 5578-5583. doi: 10.7498/aps.57.5578
    [12] 叶 超, 杜 伟, 宁兆元, 程珊华. 栅网与偏压对CHF3电子回旋共振放电等离子体特性的影响. 物理学报, 2003, 52(7): 1802-1807. doi: 10.7498/aps.52.1802
    [13] 苍宇, 张杰, 邱阳, 张军, 彭练矛. 超热电子在非均匀磁场中的运动轨迹. 物理学报, 2002, 51(4): 843-846. doi: 10.7498/aps.51.843
    [14] 樊锡君, 田淑芬, 李 健, 刘 杰, 白成杰. 开放的无粒子数反转激光系统中原子响应的时间演化和光放大机制. 物理学报, 2000, 49(9): 1719-1725. doi: 10.7498/aps.49.1719
    [15] 王平山, 余少英, 雷芳燕, 罗 敏, 马乔生, 谭 杰, 顾秉林. 导电栅网对相对论速调管中电子束的约束作用. 物理学报, 1998, 47(3): 485-493. doi: 10.7498/aps.47.485
    [16] 束小建. 带轴向引导磁场自由电子激光器中的电子轨迹与稳定性. 物理学报, 1991, 40(10): 1624-1631. doi: 10.7498/aps.40.1624
    [17] 黄国松, 周烽, 顾绍庭, 张国轩, 陈泽兴. 钕玻璃圆筒激光器的热畸变. 物理学报, 1990, 39(3): 367-374. doi: 10.7498/aps.39.367
    [18] 程成, 孙威, 唐传舜. 脉冲激光等离子体中时间分辨的电子温度和电子密度. 物理学报, 1988, 37(7): 1150-1156. doi: 10.7498/aps.37.1150
    [19] 西门纪业. 高斯轨迹参量的线性变换对于电子光学象差的影响. 物理学报, 1981, 30(4): 472-477. doi: 10.7498/aps.30.472
    [20] 刘盛纲. 静电系统中电子运动轨迹的理论. 物理学报, 1966, 22(2): 233-244. doi: 10.7498/aps.22.233
计量
  • 文章访问数:  4883
  • PDF下载量:  288
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-17
  • 修回日期:  2015-09-18
  • 刊出日期:  2016-01-05

/

返回文章
返回